analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
Hi Guys! Glad to see you here. I welcome you on board. In this post today, I’ll be discussing Analog Vibration Sensor Library for Proteus. I have already shared the digital Vibration Sensor Library for Proteus, you should check that as well. I’ve been adding brand new libraries for proteus covering sensors and Arduino boards. I’ve recently discussed Analog PIR Sensor Library for Proteus and Analog Flex Sensor Library for Proteus. You may be stuck into thinking I’ve previously shared those libraries but they were libraries covering digital PIR and digital Flex sensors, here we discussed analog libraries for both PIR and Flex sensors. Before I pen down how to download and simulate Analog Vibration Sensor Library for Proteus, let’s discuss what is vibration sensor first. A vibration sensor is mainly used to monitor the vibration of industrial machines. It is also called a piezoelectric that plays a crucial role in the proper working of industrial machinery. If vibration values increase from the industry standards, they can severely affect the overall working of the machine and in the worst case can put the machine at a grinding halt. To avoid this, we use vibration sensors that give the warning signal if vibration exceeds the desired values. These sensors are attached to the alarm system that produces audible sound indicating the machine is in danger, thus results in the deactivation of the entire machine. Vibration sensors are based on the piezoelectric effect to observe the small changes in pressure, acceleration, force, and temperature. These changes are converted into an electrical signal. Air fragrance can also be monitored by vibration sensors. They monitor the air fragrance and detect its capacitance and quality. I hope you’ve got a clear idea about the vibration sensor now we’ll download and run the Analog Vibration Library for Proteus. I’ve added both a simple simulation of the vibration sensor and a simulation with the Arduino Board. Let’s get started.

Analog Vibration Sensor Library for Proteus

  • Click the link given below to download the Analog Vibration Sensor Library for Proteus.
  • As you download this file, it returns further two files named Proteus Library and Proteus Simulations.
Analog Vibration Sensor Library for Proteus Click the Proteus Library folder that contains four files as follow:
  • VibrationSensorAnalogTEP.HEX
  • VibrationSensorTEP.HEX
  • VibrationSensorTEP.IDX
  • VibrationSensorTEP
Now copy all files given above and place them into the library folder of your Proteus software.
analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
 
  • In case you don’t have proteus software in your system, you can read this post covering how to download and install proteus software.
  • After adding the above files, start the proteus software and if it’s already running, close the software and restart again.
  • Now click the ‘P’ button to search for the ‘analog vibration sensor’ libraries that you’ve recently placed.
analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
  • As you search it, it will return the figure as given below:
analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
  • Select the sensor and click OK. Now you’ll see your cursor has now started blinking with the sensor that shows you can place your analog vibration sensor anywhere in the workspace available on the proteus software.
  • As you place your sensor, it will show the figure below:
https://www.theengineeringprojects.com/2016/05/install-download-proteus-software.html
Now we'll look into the analog vibration sensor pinout.

Vibration Sensor Pinout

The vibration analog sensor contains 4 pins as follows.
  • OUT = First is an OUT pin that is connected with a voltmeter that represents the output voltage against the variable resistor attached to the TestPin.
  • GND = Second is a ground pin that is attached to ground voltage.
  • Vcc = Third is the voltage supply pin that gets 5V to power the vibration sensor.
  • TestPin = Forth is the TestPin. This pin is only available in the proteus simulation. You don’t find it on the analog vibration sensor in real. When this pin is LOW, it shows no vibration and when this pin is HIGH it represents the vibration on the machine.

Adding HEX File

Now we’ll add the HEX file to run our vibration sensor simulation. Right-click the sensor and reach the ‘edit properties’ option and double-click the sensor it will pop up the same edit properties panel.
https://www.theengineeringprojects.com/2016/05/install-download-proteus-software.html
Browse the Sensor’s HEX file option and look for the HEX file.
https://www.theengineeringprojects.com/2016/05/install-download-proteus-software.html
You can find the HEX file in the library folder. Same HEX file that we have recently placed in the library folder. Select this HEX file and click OK. Now we’ll attach a simple circuit with the vibration sensor to run our simulation.

LC Circuit

  • We need to design a simple circuit to run this sensor in the proteus workspace. We’ve designed and attached the LC circuit with the OUT pin of the vibration sensor.
  • And TestPin is connected with a variable resistor. Both variable resistance and voltage we get on the voltmeter attached with the OUT pin are inversely proportional to each other.
  • When variable resistance is set to the maximum value the voltage on the voltmeter will be zero and when variable resistance is set to the minimum value (zero) it shows the maximum voltage i.e. 4.98V on the voltmeter.
When you run the simulation it will return the result below:
analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
  • You can see the voltage appearing on the left vibration sensor placed on the proteus workspace is 2.56V because TestPin attached with the variable resistor is set to almost half of the resistance value.
  • I told you earlier I’ll show you both simple simulation and the vibration sensor simulation with the Arduino Board. If you are interested in the Arduino Library for Proteus, check this post where I have added six Arduino Boards Libraries for Proteus.
Now connect the voltage on the OUT pin with the analog pin i.e. A0 of the Arduino Board:
analog vibration sensor library for proteus, new proteus libraries for engineering students, proteus simluation for analog vibration sensors, proteus libraries for analog vibration sensors, proteus simulation
When variable resistance is maximum the voltage on the voltmeter will be zero and its equivalent analog value across LCD attached with the Arduino Board will be 0019 and when the resistance on the variable resistor is minimum the voltage will be 4.98V and its equivalent analog value on the LCD will be 1019. This is it. I hope, you’ve got a clear insight into how to download Analog Vibration Sensor Library for Proteus. If you have any questions, you can ask me in the comment section below. I’d love to help you with the best of my expertise. Feel free to pop your suggestions about the libraries you think should be included in the proteus library database, I’ll design and add them to the database. Thank you for reading this article.