Hello readers, I hope you all are doing great. In this tutorial, we will learn how to update a webpage using Server-Sent Events and the ESP32 web server.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
It is a server push technology that enables the client devices to receive automatic updates from a server over HTTP (Hypertext Transfer Protocol) connection. SSE also describes how the server can initiate data transmission towards the client once an initial connection with the client has been established.
We have already posted a tutorial on how to implement Web socket protocol with ESP32 which is also a protocol used to notify events to a web client. Both the Server-Sent Events (SSE) and Web-Socket technologies seem to be quite similar but they are not.
The major difference between the two is that SSE is unidirectional, where the web client can only receive the updates from the ESP32 but it can’t send updates back to ESP32. On the other hand, the Web-socket protocol is bi-directional where both the web client and ESP32 can send and receive updates/events.
Fig. 1 Server-Sent event
The Server-Sent Event process initiates with an HTTP request from the web client or web page to the ESP32 web server. After that, the ESP32 is ready to send updates or events to the web client as they happen. But the web client can’t send any response or data to the ESP32 server after the initial handshake takes place.
Server-sent event technology can be used to communicate an event, GPIO states or to send sensor readings to the web client, whenever a new reading is observed.
For demonstration purpose, we are using a DHT11 sensor with the ESP32 module. ESP32 web server will display two things i.e., temperature and humidity observed using the DHT11 sensor. So, whenever a new reading is being observed, the ESP32 sends the reading to the Web Client over Server-sent events. After receiving the latest sensor reading the client updates the web page data.
Fig. 2 DHT11 sensor
DHT11 is a humidity and temperature sensor that measures its surrounding environment. It measures the temperature and humidity in a given area. It is made up of an NTC (negative temperature co-efficient) temperature sensor and a resistive humidity sensor. It also has an 8-bit microcontroller. The microcontroller is in charge of ADC (analog to digital conversion) and provides a digital output over the single wire protocol.
The DHT11 sensor can measure humidity from 20% to 90% with +-5 percent accuracy (RH or relative humidity) and temperature from 0 degrees Celsius to 50 degrees Celsius with +-2C accuracy.
DHT11 sensors can also be used to build a wired sensor network with a cable length of up to 20 meters.
Table 1
Note: Connect a 10K resistor between data and power (+5V) pin of DHT11 sensor module.
Fig. 3 ESP32 and DHT11 connections/wiring
We are using Arduino IDE to compile and upload code into the ESP32 module. You must have ESP32 board manager installed on your Arduino IDE to program the ESP32 module. To know more about Arduino IDE and how to use it, follow our previous tutorial i.e., on ESP32 programming series. The link is given below:
https://www.theengineeringprojects.com/2021/11/introduction-to-esp32-programming-series.html
Fig. 4 manage libraries
Fig. 5 Install DHT sensor library
ESP32 board manager doesn’t come with inbuilt libraries to create an asynchronous web server. So we need to download the library file from external sources and then add into Arduino IDE.
We need to install two library files:
Once you have successfully downloaded the required libraries, next step it to install or add these libraries in Arduino IDE.
To add the libraries in Arduino IDE, go to Sketch >> Include Library >> Add .zip library and then select the downloaded library files.
Fig. 6 adding necessary libraries
#include <WiFi.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include "DHT.h"
#define DHTPIN 4 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT11 // DHT 11
// Initializing the DHT11 sensor.
DHT dht(DHTPIN, DHTTYPE);
// Replace with your network credentials
const char* ssid = "SSID";
const char* password = "password";
// Create AsyncWebServer object on port 80
AsyncWebServer server(80);
// Create an Event Source on /events
AsyncEventSource events("/events");
// Timer variables
unsigned long lastTime = 0;
unsigned long timerDelay = 20000; //20 sec timer delay
//==== Creating web page
const char index_html[] PROGMEM = R"rawliteral(
<!DOCTYPE HTML><html>
<head>
<title>SSE with ESP32 Web Server</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.7.2/css/all.css" integrity="sha384-fnmOCqbTlWIlj8LyTjo7mOUStjsKC4pOpQbqyi7RrhN7udi9RwhKkMHpvLbHG9Sr" crossorigin="anonymous">
<link rel="icon" href="data:,">
<style>
html {font-family: Times New Roman; display: inline-block; text-align: justify;}
p { font-size: 1.2rem;}
body { margin: 0;}
.topnav { overflow: hidden; background-color: blue; color: white; font-size: 1rem; }
.content { padding: 20px; }
.card { background-color: #ADD8E6; box-shadow: 2px 2px 12px 1px rgba(140,140,140,.5); }
.cards { max-width: 600px; margin: 0 auto; display: grid; grid-gap: 2rem; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); }
.reading { font-size: 1.4rem; }
</style>
</head>
<body>
<div class="topnav">
<h1>Server-Sent Events </h1>
<h2> DHT11 Sensor Data </h2>
</div>
<div class="content">
<div class="cards">
<div class="card">
<p> DHT11 Temperature</p><p><span class="reading"><span id="temp">%TEMPERATURE%</span> °C</span></p>
</div>
<div class="card">
<p> DHT11 Humidity</p><p><span class="reading"><span id="hum">%HUMIDITY%</span> %</span></p>
</div>
</div>
</div>
<script>
if (!!window.EventSource)
{
var source = new EventSource('/events');
source.addEventListener('open', function(e)
{
console.log("Events Connected");
}, false);
source.addEventListener('error', function(e)
{
if (e.target.readyState != EventSource.OPEN)
{
console.log("Events Disconnected");
}
}, false);
source.addEventListener('message', function(e)
{
console.log("message", e.data);
}, false);
source.addEventListener('temperature', function(e)
{
console.log("temperature", e.data);
document.getElementById("temp").innerHTML = e.data;
}, false);
source.addEventListener('humidity', function(e)
{
console.log("humidity", e.data);
document.getElementById("hum").innerHTML = e.data;
}, false);
}
</script>
</body>
</html>)rawliteral";
void setup() {
Serial.begin(115200); //initialize serial monitor
//===set and initialize Wi-Fi
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
Serial.print("Connecting to WiFi ..");
while (WiFi.status() != WL_CONNECTED)
{
Serial.print('.');
delay(1000);
}
Serial.print("IP Address: ");
Serial.println(WiFi.localIP()); // print the IP address
//====Initialize DHT11 sensor
dht.begin();
//====Handle Web Server
server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){
request->send_P(200, "text/html", index_html);
});
// Handle Web Server Events
events.onConnect([](AsyncEventSourceClient *client)
{
if(client->lastId())
{
Serial.printf("Client reconnected! Last message ID that it got is: %u\n",
client->lastId());
}
// send event with message "hello!", id current millis
// and set reconnect delay to 1 second
client->send("hello!", NULL, millis(), 10000);
});
server.addHandler(&events);
server.begin();
}
void loop()
{
delay(2000);
float humidity = dht.readHumidity();
// Read temperature as Celsius (the default)
float temperature = dht.readTemperature();
// Check if any reads failed and exit early (to try again).
if (isnan(humidity) || isnan(temperature))
{
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
if ((millis() - lastTime) > timerDelay)
{
// Send Events to the Web Server with the Sensor Readings
events.send("ping",NULL,millis());
events.send(String(temperature).c_str(),"temperature",millis());
events.send(String(humidity).c_str(),"humidity",millis());
Serial.print(F("Humidity(%): "));
Serial.println(humidity);
Serial.print(F("Temp.: "));
Serial.print(temperature);
Serial.println(F("°C "));
}
}
Fig. 7 Header files
Fig. 8 Global declarations
Fig. 9
Fig. 10 Enter Network credentials
Fig. 11 Server port
Fig. 12 Event source
Fig. 13 Timer Variables
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21 Fetch/obtain the IP address
Fig. 22 Initialize DHT sensor
Fig. 23
Fig. 24 Handling server events
Fig. 24 initializing web server
Fig. 25
Fig. 26 If error occurs while reading data from DHT11
Fig. 27 Sending events to the server
Fig. 28 Print Sensor data on the Serial monitor
Fig. 29 Select development board and COM port
Fig. 30
Fig. 31
This concludes the tutorial. I hope you found this of some help and also hope to see you soon with a new tutorial on ESP32.