Smart Home Security System using Arduino
Security systems are widely suggested for homes as well as other locations. Everybody wants to take necessary steps to prevent infiltration at home, thus this security is necessary. Intruders nowadays may take advantage of almost any illegal activity and wreak havoc on a property's security. The security of one's home is a critical concern that everyone faces in the current day.
While there are certain devices on the market that may considerably help protect your house, some of them are excessively costly and need constant maintenance. Many devices regarding smart home security systems are available in the market but these are not user friendly according to the budget, the device we designed provides the user with a better interface with the help of LCD. We have used enough sensors that make sure the security protocol.
So in this way, we designed a reasonable security system that has the features of gas and flame detection with the help of MQ-2 Gas Sensor and flame sensor respectively and also have installed a Motion detector sensor known as PIR sensor to detect the intruder's motion. For a better user interface an LCD and Alarm are installed to alert the user. The whole system is programmed using Arduino UNO. A proteus circuit is designed for this project as shown below:
- You can download the complete project i.e. Proteus Simulation and Arduino Code by clicking the below button:
Smart Home Security System using Arduino
Components Required
For the home security system, we have used 3 sensors which are briefly explained as follows:
Flame Sensor
- The flame sensor is used to detect the fire, it has 3 pins (Ground, VCC, OUTPUT) with operational voltages ranging from 3.3V to 5V.
- This sensor may be constructed using an electrical circuit and a receiver similar to that used for electromagnetic radiation.
- This sensor employs the infrared flame flash technology, which enables it to operate through a layer of oil, dust, water vapor etc.
- There are several wavelengths of flame sensors normally in the range of 700 to 1100 nm from the source.
- Normally flame sensors have an operating temperature ranging from -25? ~ 85? with several features like adjustable sensitivity, fast response time and ease to use.
- Proteus doesn't have a Flame Sensor in its database, so you need to download this Flame Sensor Library for Proteus.
PIR Sensor
- PIR Sensor is used to detect the intruder’s motion.
- There are mainly two kinds of infrared sensors one is active and the other is passive.
- The active infrared sensor emits as well as absorbs the infrared radiations whereas the passive infrared sensor simply absorbs not emit.
- When an object enters or escapes the sensor's range, a passive infrared sensor is employed to detect it.
- For adjusting the sensitivity and delay time, there are two trim pots supplied. You may alter them to meet your requirements.
- The sensor produces a HIGH output when it senses movement within its range; otherwise, it generates a LOW output.
- PIR also has 3 pins like a Flame sensor.
- It has operating voltages of range 5V - 20V with output voltage generation of 0V-3V when the object is detected in the sensing range that is 7 meters.
- Proteus doesn't have a PIR Sensor in its database, so you need to download this PIR Sensor Library for Proteus.
MQ-2 Gas Sensor
- MQ2 gas sensors detect the presence of gases such as LPG, methane, ethanol and carbon monoxide in the air ranging up to 10000 ppm using electricity.
- It is also known as chemiresistor for the MQ2 gas sensor.
- The resistance of the sensing material changes depending on the amount of gas present.
- When it comes to detecting gas, sensors use variations in resistance value that generates the output voltage.
- When a sensor material is heated to a high temperature in the air, oxygen is adsorbed on the surface.
- Because current can flow via the sensor, its analog voltage values may now be read.
- The voltage values reported here may be used to compute the concentration of a gas. When the gas concentration is high, the voltage values are greater.
- Proteus doesn't have a Gass Sensor in its database, so you need to download this Gas Sensor Library for Proteus.
Arduino UNO
- Atmel's ATMega328 is used in the Arduino Uno, an open-source single-board microcontroller.
- Either an external power source or a 5V USB connection may be used to power the device.
- In all, there are 14 digital input/output pins on the board, with 6 of them serving as PWM outputs.
- On the board, you'll find a reset button and six analog input pins. The Arduino software is used to program the board, which is written in C language.
- When it came to controlling the home security system, the Arduino Uno's capabilities were found to be sufficient.
- Arduino Boards are not present in Proteus, so we need to use this Arduino Library for Proteus.
Circuit Designing
- This whole project is designed to provide a security system for the home in which multiple safety sensors can be installed with a Buzzer and LCD for a better user interface.
- We won't design this project in real, instead, we are going to design its Proteus simulation.
- If you are working on an electronics/embedded project, then it's always a best practice to design its simulation first.
- In simulations, it's easy to debug your code and thus you can program quickly.
- Once you are satisfied with your project's working, you can move forward to hardware designing.
So, let's design our Proteus Simulation for Smart Home Security System:
Proteus Simulation
- These are the components, which we are going to use for designing our Proteus Simulation:
- So, select these components from Proteus Components Library and place them in your workspace, as shown in the below figure:
- Next, we need to connect these components' pins to complete our circuit, as shown in the below figure:
- As you can see in the above simulation, we have used three sensors in total, which we have discussed above.
So, now we are going to design the Arduino Code for this simulation:
Arduino Programming Code
We have designed the circuit in our Proteus Simulation and next, we need to design its Arduino Code, in order to make it work.
LCD Initialization Code
- First of all, we are going to interface LCD with Arduino UNO and will display the Project's name on the screen.
- The code is shown in the below figure:
- As you can see in the above figure, we have first initialized the variables.
- Arduino board is programmed using Arduino IDE software which has mainly 2 sections void setup and void loop.
- Before void setup, we have to declare the pins of sensors and actuators that we are using in our project.
- Depending on the nature of sensors (analog or digital) the pins of sensors are connected to Arduino UNO accordingly.
- #define is used to declare the pins of Gas, PIR, FIRE and BUZZER.
- Initially, all the sensors have zero value that is stored by an integer variable.
- In the void setup section, input and output sensors are defined.
- GAS, PIR, and FIRE sensors are employed as input sensors to detect and activate the BUZZER, which is an output component.
- LCD 20×4 is used and lcd.begin is used to initiate the LCD.
- lcd.setCursor is used to cursor position on LCD and the name of the project is displayed on LCD Screen using lcd.print command.
- Now, let's run our simulation to check the results, shown in the figure below:
Sensors Interfacing with Arduino
- In Arduino IDE code execution, void setup runs once while the void loop executes again and again.
- analogRead and digitalRead commands are used to read the value of analog and digital sensors respectively, while analogWrite and digitalWrite commands are used for sending commands or data.
- As shown in the above figure, first, we have read the sensors' data and if all sensors are in LOW state, then have displayed the message "You are safe".
- Let's run the code to check the output:
- As you can see in the above figure, all sensors are at a LOW state and thus LCD is displaying the safe message.
- Next, we have added the if loop for the case where all sensors are giving HIGH value:
- The rest of the code has similar if loops for various conditions of sensors.
- You can download the complete code and Proteus Simulation from the link, given at the start of this tutorial.
- Now, let's run our final simulation and test the sensors and if everything goes fine, you will get results as shown in the below figure:
Future Recommendations
It deters the crime and notifies the user about the gas or fire problem. Home security systems are mostly utilized for safety reasons in residences, businesses, and educational facilities. Another option is to use a mobile device or the internet to send data to a remote location. Other modules, such as a wind sensor or a fire sensor, might be added to the system in the future. Voice alarm modules may also alert you to an intruder or a gas leak if you use them. We can increase the number of sensors to make it better. We can use the latest technology of the Internet of Things that makes our system wireless. A growing number of devices and goods are being connected to the Internet, which is referred to as the Internet of Things by the phrase. We can use the Internet of Things to produce a low-cost security system for residential and industrial applications that is especially useful for home security. When the door is opened or an unauthorized entry is detected, the system will send an alert to the owner. The user may take action after getting the notification. ESP8266 Wi-Fi module will connect to and interact with the Internet, while an Arduino Uno microcontroller keeps track of the system's status, as well as a magnetic Reed sensor for sounding the alarm. The principal advantages of this system are ease of installation, low costs, and low maintenance requirements.
So, that was all for today. I hope you have enjoyed today's project. If you have any questions, ask in the comments. Thanks for reading. Take care !!! :)
Vibration Sensor Library for Proteus V2.0
Hello friends, I hope you all are doing great. In today's tutorial, I am going to share a new Vibration Sensor Library for Proteus V2.0. It's the second version of the Vibration Sensor Library for Proteus. In this library, we have four vibration sensors.
These vibrations sensors have both digital and analog output pins and can easily be connected with microcontrollers i.e. Arduino, PIC, Atmel etc. Before downloading the Proteus Library zip file, let's first have a look at the brief overview of Vibration Sensor:
Where To Buy? |
---|
No. | Components | Distributor | Link To Buy |
1 | Arduino Uno | Amazon | Buy Now |
What is Vibration Sensor?
- A vibration sensor is a small embedded sensor, which is used to detect vibrations on any surface.
- These vibration sensors are used for various purposes i.e. fault detection on heavy machinery, placed on doors & windows for security etc.
- Real vibration sensors are shown in the below figure:
Vibration Sensor Library for Proteus V2.0
- First of all, download the zip file of Proteus Library for Vibration Sensor, by clicking the below button:
Download Proteus Library Files
- After downloading the zip file, extract its files and open the folder named "Proteus Library Files".
- In this folder, you will find 3 Proteus Library Files named:
- VibrationSensor2TEP.IDX
- VibrationSensor2TEP.LIB
- VibrationSensor2TEP.HEX
- We need to place these files in the Library folder of Proteus software.
Note:
- After adding these library files, open your Proteus software or restart it, if it's already running.
- In the components section, make a search for Vibration, and you will get results, as shown in the below figure:
- In the above search result, the first four modules are from V2.0, while the fifth one is of the first version.
- Let's place these first four modules in the Proteus workspace, as shown in the below figure:
Adding Hex File to the Sensor
- Next, we need to add the hex file of the sensor, so double click on the sensor to open its Properties Panel.
- In the Program File section, browse to the hex file, which we have downloaded above and placed it in the Library folder of Proteus software:
- After adding the hex file, click the Ok button to close the properties panel.
The vibration sensor is now ready to simulate in Proteus, so let's design a simple circuit to understand its working:
Vibration Sensor Proteus Simulation
- I have simulated two of these vibration sensors, as shown in the below figure:
- As you can see, I have placed an LC filter on the analog output of the vibration sensor, its because proteus gives us a peak to peak voltage value and we need t convert it to Vrms.
- This LC filter is not required in real hardware.
- Now, let's run the Proteus simulation and if everything's fine, you will get results as shown in the below figure:
- As the potentiometer value is different on both sensors, that's why we are getting different outputs.
So, that was all for today. I hope this sensor will help engineering students in their projects' simulations. Thanks for reading. Have a good day. Bye !!! :)
Home Security System using Arduino UNO in Proteus
Hello friends, I hope you all are doing well. In today's tutorial, we are going to design a Home Security System using Arduino UNO in Proteus software. It's the most commonly designed engineering project, especially in electrical, electronics and mechatronics engineering. Normally engineering students design it as a semester project during their engineering course.
So, today we will design a home security system from scratch in Proteus software. I have given the complete project below to download but I would suggest you to design it on your own so that you could understand it better. So, let's get started:
Home Security System: Project Description
- Before going into the detail, let's first download the complete Proteus Simulation with Arduino Code, by clicking the below button:
Home Security System using Arduino UNO in Proteus
Let me first give you a detailed project description i.e. what we actually want to design? We want to build a Home Security Project, which should follow these security protocols:
- Fire alarm: It should be able to detect the fire and sound an alarm to alert everyone at home.
- Smoke alarm: It should detect the gas(smoke) and turn on the alarm(if detected).
The above-mentioned security protocols will be followed 24/7. Moreover, there will be two security modes in the project, named:
- Secure Mode.
- Normal Mode.
Let's have a look at both of these modes, one by one:
1. Secure Mode
- This mode should be selected, when owners want to completely secure their home i.e. they are leaving home or while sleeping at night.
- If the Secure Mode is selected, the project should follow the following security protocols:
- Intruder Detection Alarm: It should detect the presence of any human being in the occupied premises.
- Windows Security Alarm: If someone tries to break through the windows, the project should sound an alarm.
- Door Security Alarm: If any intruder tries to break through the main door, it should again sound the alarm to alert everyone.
2. Normal Mode
- This mode should be selected, when owners are at home and just want to take the basic security measures.
- In this mode, only the Fire Alarm & Gas Alarm will work, while all other alarms will remain on standby.
Other Features
- There should be an LCD, to display values of all parameters.
- It should have a buzzer to generate an alarm, in case of emergency.
- There should a Push Button to make switches between these security modes.
Here's the final simulation, which we are going to design in today's lecture:
So, these are our requirements, which we want to achieve in this Home Security Project. Now let's have a look at the components selected for this project:
Home Security System: Components Selected
Now let's have a look at the list of components, which I have selected for this Home Security Project. I will also briefly explain the purpose of using each component.
1. Arduino UNO
- As clearly it's an Embedded Systems Project, so first of all we need to select a Microcontroller for our project.
- As I have mentioned earlier, we will use the Arduino UNO Microcontroller board for designing this project.
- Arduino UNO will act as the brain of the project and will control all sensors and modules.
2. Flame Sensor:
- A flame sensor is used to detects the presence of fire.
- The sensor basically consists of a photo-diode that detects the Infrared rays that emit from the fire. When it detects a fire, its output goes HIGH.
3. Gas Sensor (MQ-6)
- MQ-6 Gas Sensor is used to detect the concentration of gases in the environment.
- The sensor produces a potential difference proportional to the concentration of the particular gases.
- The type of gas that it detects depends upon the material used in the sensor.
- There are many gas sensors available in the market i.e. MQ-2, MQ-3, MQ-4 etc.
- These sensors are available as ready-made modules for easy interfacing with the microcontroller.
4. PIR Sensor(HC-SR501)
- HC-SR501 PIR sensor is used to detect any human being(intruder) in the Secure Mode.
- It detects the IR radiations from the human movement & generates a pulse on its output.
- The time period of the pulse could be varied by using the potentiometer on the sensor.
5. Vibration sensor(SW-420)
- The SW-420 vibration sensor is used to detect any forced entry through windows.
- In Secure Mode, if someone tries to open the window, the sensor will detect vibrations and will send a HIGH signal to the microcontroller.
6. Infrared Sensor
- An infrared sensor will be placed at the door and someone tried to enter through that door, the sensor will detect it.
- It consists of an IR transmitter and a photo-diode that are placed close to each other.
- If any object movement occurs in front of the sensor, the IR rays hit the object and return back with a particular angle called incident angle.
- This pulls the comparator output to ground or logic LOW.
7. LCD 20x4
- LCD 20x4 will be used for displaying the values of all these sensors.
- It will also display useful information i.e. which mode is selected.
8. Buzzer
- A small 5V Buzzer is used to sound the alarm.
9. LM7805
- LM7805 is a voltage regulator and is used to convert voltage from 12V to 5V.
- Power sources(i.e. battery, adapter etc.) available are normally 12V, as it has become a standard.
- Moreover, many components also operate at 12V like a buzzer or DC motor.
- While microcontrollers and sensors work on 5V, so in Embedded projects, it's quite necessary to design a voltage regulator from 12V to 5V and in some cases 3.3V.
- I normally prefer LM7805 for converting voltage from 12V to 5V.
10. Resistances(1kohm)
- We need to use a few resistances of 1kohm.
11. Small LED
- We will also use a small LED for power indication.
12. Capacitors(100uF)
- We will also use few capacitors of 100uF, as it removes any noise/ripples.
So, these are the components, we are going to use for designing Home Security System. Now let's get started with designing the Proteus Simulation:
Proteus Simulation of Home Security System
As I have told you earlier, I am going to use Proteus software for designing this project. Proteus is an excellent simulation tool, where we will not only design the circuit of this project but will also test its output. I always design my programming algorithms on simulations as working on real hardware is too time-consuming. You should remove all your programming bugs in simulation and once confirmed then design your project in real hardware. So, let's start:
Install Proteus Libraries
- Arduino boards & sensors' modules are not available in the Proteus components list.
- So, first of all, we need to install these Proteus libraries:
- Adding these libraries is quite simple, you just need to place their files in the library folder of Proteus software.
- If you got any issues, then read this guide on How to add a Library in Proteus 8.
Once you added all the libraries, now open your Proteus software.
Designing Circuit Diagram in Proteus
- Now we need to design a circuit for our project, so select these components from Proteus Components Search Box.
- First of all, let's design the voltage regulator circuit using LM7805, which will be simply converting the voltage from 12V to 5V.
- As you can see in the above figure, I have used 12V Battery, while the output of LM7805 is showing 5V and I have also placed an LED for power indication.
LCD Interfacing with Arduino:
- Next, we need to interface 20x4 LCD with Arduino UNO, so design the circuit as shown in the below figure:
Next, we need to interface five sensors with Arduino UNO, so let's add them to our Proteus simulation:
Sensors Interfacing with Arduino:
- These are simple digital & analog sensors and are all powered up at 5V.
- So, simply connect them as shown in the below figure:
- The Flame Sensor is connected to pin A0 of Arduino UNO.
- Gas Sensor is connected to pin A1 of Arduino UNO.
- PIR Sensor is connected to pin A2 of Arduino UNO.
- The Vibration Sensor is connected to pin A3 of Arduino UNO.
- The Infrared Sensor is connected to pin A4 of Arduino UNO.
For simulation, ensure all hex files are uploaded to each sensor for proper working. You can upload the source code hex file to the Arduino, by pressing Ctrl+E or by right click --> Edit properties.
Buzzer & Push Button:
- Finally, we need to add the Buzzer to sound the alarm in emergency cases, I have connected it to Pin A5 of Arduino UNO.
- I have also connected a push-button for switching the modes, connected to Pin 7 of Arduino UNO, as shown in the below figure:
- Here's the image of the complete Proteus Simulation for Home Security System:
Now let's design the Arduino programming code for Home Security Project:
Arduino Code for Home Security System
In the previous section, we have designed the Proteus simulation of the project, now let's design its Arduino Code to make it alive. Let's get started:
Initialization LCD Arduino Code
- First of all, we need to define all our variables, as you can see in the code shown in the right figure.
- I have included the Liquid Crystal Library, which is used to operate LCD.
- Next, I have defined all my sensors to the respective pins and then initialized boolean variables for storing the output of sensors.
- In the Setup loop, I have made the sensors' pins input pullup using the pinMode Arduino command.
- Finally, displayed an initialization message on the LCD screen i.e. "Home Security System using Arduino UNO By TEP".
- The message will display for around 1 second and then LCD will be cleared and the SensorDisplay function will be called, which will simply write sensors' names on the LCD screen.
- Now compile your code and add the hex file in Arduino UNO and run your PRoteus simulation.
- If everything goes fine, you will get results as shown in the below figure:
So far, we have just displayed the sensor's names, now let's read the sensors' data in the loop section:
Reading Sensors' Data
- In the loop section, first of all, we need to read the sensors' data using the digitalRead command, as shown in the code.
- After reading the sensor's data, I have called the SensorValues function, in which I have placed a check on each sensor's value and updated it on LCD.
- It's quite straightforward code, if the sensor is giving HIGH output, I am displaying Yes on LCD and if it's LOW, I am simply printing No.
- We haven't yet defined the modes, so the project will keep on reading the sensors and will display their respective value in the LCD.
- As you can see in the below figure, if the TestPin of the sensor is HIGH, its respective value on LCD is showing "Yes" and if it's LOW then "No" is written.
- Now, if you change any sensor's value, its respective value on LCD will be updated.
So, we have successfully interfaced our sensors with Arduino UNO and now it's time to add operational modes to our project.
Two Operational Modes
- As I mentioned earlier, we need to add two operational modes in our project, and the push button will be used for conversion from one mode to another.
- So, I have simply added an If loop in my code, as shown in the figure on the right side.
- In normal mode, I have simply displayed the name of the mode at the first line of LCD.
- While in secure mode, I am checking if either of the sensors goes HIGH, simply turn ON the Buzzer.
- Although, you won't be able to hear the Buzzer sound in the below figure, but you can see Buzzer's Pin is HIGH because two of the sensors are giving a response. Check the video for Buzzer working.
- We normally need to use an optocoupler or relay driver in between the buzzer and microcontroller as buzzers normally operate at 12V, but 5V buzzers are also available.
- Here's the complete Arduino Code:
/*
* All rights reserved to TEP www.TheEngineeringProjects.com
*/
#include
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
#define Flame A0
#define Gas A1
#define Pir A2
#define Vib A3
#define Ir A4
#define Buzzer A5
#define Switch 7
boolean Fire, Smoke, Intruder, Window, Door;
boolean Mode = false;
void setup() {
pinMode(Flame,INPUT_PULLUP);
pinMode(Gas,INPUT_PULLUP);
pinMode(Pir,INPUT_PULLUP);
pinMode(Vib,INPUT_PULLUP);
pinMode(Ir,INPUT_PULLUP);
pinMode(Switch,INPUT_PULLUP);
pinMode(Buzzer,OUTPUT);
lcd.begin(20,4);
pinMode(Buzzer, OUTPUT);
lcd.setCursor(0,1);
lcd.print("HOME SECURITY SYSTEM");
lcd.setCursor(0,2);
lcd.print(" USING ARDUINO UNO ");
lcd.setCursor(7,3);
lcd.print("By TEP ");
//delay(700);
lcd.clear();
SensorDisplay();
}
void loop()
{
Fire = digitalRead(Flame);
Smoke = digitalRead(Gas);
Intruder = digitalRead(Pir);
Window = digitalRead(Vib);
Door = digitalRead(Ir);
Mode = digitalRead(Switch);
SensorValues();
if(Mode==false) // Normal mode
{
lcd.setCursor(4,0);
lcd.print("Normal Mode");
}
else // Secure Mode
{
lcd.setCursor(4,0);
lcd.print("Secure Mode");
if((Fire == HIGH) || (Smoke == HIGH) || (Intruder == HIGH) || (Window == HIGH) || (Door == HIGH)){
digitalWrite(Buzzer, HIGH);
}else{
digitalWrite(Buzzer, LOW);
}
}
}
void SensorDisplay()
{
lcd.setCursor(0,1);
lcd.print("Fire:");
lcd.setCursor(10,1);
lcd.print("Smoke:");
lcd.setCursor(0,2);
lcd.print("Door:");
lcd.setCursor(10,2);
lcd.print("Window:");
lcd.setCursor(0,3);
lcd.print("Intruder:");
}
void SensorValues()
{
if(Fire == true){ lcd.setCursor(6,1); lcd.print("Yes");}
else{ lcd.setCursor(6,1); lcd.print("No ");}
if(Smoke == true){lcd.setCursor(17,1); lcd.print("Yes");}
else{lcd.setCursor(17,1); lcd.print("No ");}
if(Intruder == true){lcd.setCursor(11,3); lcd.print("Yes");}
else{lcd.setCursor(11,3); lcd.print("No ");}
if(Window == true){lcd.setCursor(17,2); lcd.print("Yes");}
else{lcd.setCursor(17,2); lcd.print("No ");}
if(Door == true){lcd.setCursor(6,2); lcd.print("Yes");}
else{lcd.setCursor(6,2); lcd.print("No ");}
}
Future Scope of Home Security System
- Embedded has taken over the whole world because of its user-friendliness and low cost.
- Instead of hiring security guards(which is quite expensive), now smart homes in modern societies are equipped with such home security systems.
- Modern Home Security systems are even linked with local police or security agencies for emergency help.
- Moreover, these security systems are not bound to homes only, nowadays offices, banks, shopping malls etc. are all equipped with such smart security systems.
Future Work on Home Security System
- Today, we have designed a very simple Home Security System, where we interfaced few sensors and have only placed a Buzzer.
- We will continue this project and will add smart features to it.
- Let's have a look at few features, which we can add to this project:
- We can interface the GSM module to send messages, in case of emergency.
- We can add more sensors i.e. ultrasonic sensors, different types of Gas sensors in it.
- We can also improve our code by using interrupts instead of polling.
- We can also add a camera for facial recognition.
- To improve the security, we can add a keypad and only authorized persons will have the access to enter.
- The fingerprint sensor can also be used for identification purposes.
No matter what happens, you should put safety first. Even a great security system won’t ensure full protection, which is why you might want to consider secondary measures. Hiring fire watch security will assist you on a daily basis, performing tasks that machines cannot. These veterans will protect your home or office, addressing potential hazards as they appear.
So, that was all for today. I hope you guys have enjoyed today's project. If you have any questions/queries, please ask in the comments and I will try my best to resolve them asap. Thanks for reading, take care. Bye :)
Analog Vibration Sensor Library for Proteus
Hi Guys! Glad to see you here. I welcome you on board. In this post today, I’ll be discussing Analog Vibration Sensor Library for Proteus. I have already shared the digital
Vibration Sensor Library for Proteus, you should check that as well.
I’ve been adding brand new libraries for proteus covering sensors and Arduino boards. I’ve recently discussed
Analog PIR Sensor Library for Proteus and
Analog Flex Sensor Library for Proteus. You may be stuck into thinking I’ve previously shared those libraries but they were libraries covering digital PIR and digital Flex sensors, here we discussed
analog libraries for both PIR and Flex sensors.
Before I pen down how to download and simulate Analog Vibration Sensor Library for Proteus, let’s discuss what is vibration sensor first.
A vibration sensor is mainly used to monitor the vibration of industrial machines. It is also called a piezoelectric that plays a crucial role in the proper working of industrial machinery. If vibration values increase from the industry standards, they can severely affect the overall working of the machine and in the worst case can put the machine at a grinding halt.
To avoid this, we use vibration sensors that give the warning signal if vibration exceeds the desired values. These sensors are attached to the alarm system that produces audible sound indicating the machine is in danger, thus results in the deactivation of the entire machine.
Vibration sensors are based on the piezoelectric effect to observe the small changes in pressure, acceleration, force, and temperature. These changes are converted into an electrical signal. Air fragrance can also be monitored by vibration sensors. They monitor the air fragrance and detect its capacitance and quality.
I hope you’ve got a clear idea about the vibration sensor now we’ll download and run the Analog Vibration Library for Proteus. I’ve added both a simple simulation of the vibration sensor and a simulation with the Arduino Board.
Let’s get started.
Analog Vibration Sensor Library for Proteus
- Click the link given below to download the Analog Vibration Sensor Library for Proteus.
- As you download this file, it returns further two files named Proteus Library and Proteus Simulations.
Analog Vibration Sensor Library for Proteus
Click the Proteus Library folder that contains four files as follow:
- VibrationSensorAnalogTEP.HEX
- VibrationSensorTEP.HEX
- VibrationSensorTEP.IDX
- VibrationSensorTEP
Now copy all files given above and place them into the library folder of your Proteus software.
- In case you don’t have proteus software in your system, you can read this post covering how to download and install proteus software.
- After adding the above files, start the proteus software and if it’s already running, close the software and restart again.
- Now click the ‘P’ button to search for the ‘analog vibration sensor’ libraries that you’ve recently placed.
- As you search it, it will return the figure as given below:
- Select the sensor and click OK. Now you’ll see your cursor has now started blinking with the sensor that shows you can place your analog vibration sensor anywhere in the workspace available on the proteus software.
- As you place your sensor, it will show the figure below:
Now we'll look into the analog vibration sensor pinout.
Vibration Sensor Pinout
The vibration analog sensor contains 4 pins as follows.
- OUT = First is an OUT pin that is connected with a voltmeter that represents the output voltage against the variable resistor attached to the TestPin.
- GND = Second is a ground pin that is attached to ground voltage.
- Vcc = Third is the voltage supply pin that gets 5V to power the vibration sensor.
- TestPin = Forth is the TestPin. This pin is only available in the proteus simulation. You don’t find it on the analog vibration sensor in real. When this pin is LOW, it shows no vibration and when this pin is HIGH it represents the vibration on the machine.
Adding HEX File
Now we’ll add the HEX file to run our vibration sensor simulation. Right-click the sensor and reach the ‘edit properties’ option and double-click the sensor it will pop up the same edit properties panel.
Browse the Sensor’s HEX file option and look for the HEX file.
You can find the HEX file in the library folder. Same HEX file that we have recently placed in the library folder.
Select this HEX file and click OK. Now we’ll attach a simple circuit with the vibration sensor to run our simulation.
LC Circuit
- We need to design a simple circuit to run this sensor in the proteus workspace. We’ve designed and attached the LC circuit with the OUT pin of the vibration sensor.
- And TestPin is connected with a variable resistor. Both variable resistance and voltage we get on the voltmeter attached with the OUT pin are inversely proportional to each other.
- When variable resistance is set to the maximum value the voltage on the voltmeter will be zero and when variable resistance is set to the minimum value (zero) it shows the maximum voltage i.e. 4.98V on the voltmeter.
When you run the simulation it will return the result below:
- You can see the voltage appearing on the left vibration sensor placed on the proteus workspace is 2.56V because TestPin attached with the variable resistor is set to almost half of the resistance value.
- I told you earlier I’ll show you both simple simulation and the vibration sensor simulation with the Arduino Board. If you are interested in the Arduino Library for Proteus, check this post where I have added six Arduino Boards Libraries for Proteus.
Now connect the voltage on the OUT pin with the analog pin i.e. A0 of the Arduino Board:
When variable resistance is maximum the voltage on the voltmeter will be zero and its equivalent analog value across LCD attached with the Arduino Board will be 0019 and when the resistance on the variable resistor is minimum the voltage will be 4.98V and its equivalent analog value on the LCD will be 1019.
This is it. I hope, you’ve got a clear insight into how to download Analog Vibration Sensor Library for Proteus. If you have any questions, you can ask me in the comment section below. I’d love to help you with the best of my expertise. Feel free to pop your suggestions about the libraries you think should be included in the proteus library database, I’ll design and add them to the database. Thank you for reading this article.
GSM Based Home Security System
Hello friends, I hope you all are fine and having fun with your lives. Today, I am going to share a complete project named as GSM Based Home Security System. I have designed its complete working simulation in Proteus and have used different libraries which you can also download from our blog. In the previous post, I have posted Home Automation Project using XBee & Arduino and today we are gonna work on Home Security System.
We have designed this simulation after a lot of efforts that's why we have placed a very small amount of $50 on it so that engineering students can download it and get knowledge from it. Moreover, as its a complex project so when you buy it then there's a chance that you can't run it by yourself so we also offer a free service. If you got into any trouble while running this simulation then use our Contact Form we will help you out personally within 24 hours.
GSM based Home Security System
- You can buy this complete project by clicking the below button:
Buy This Project
- When you will click the above button, you will be taken to the sale page for this project and you can buy this project using PayPal.
- When you buy it you will get the complete code along with working Proteus simulation.
- So, let's have an overview of this GSM Based Home Security System.
- This GSM based Home Security System contains seven sensors which will be installed theoretically in your home. :)
- These seven sensors are:
- PIR Sensor: For Motion Detection.
- Smoke Sensor: For Smoke Detection.
- Flame Sensor: For Fire Detection.
- Vibration Sensor for Window: For Detection of vibrations on Window.
- Vibration Sensor for Door: For Detection of vibrations on Door.
- Ultrasonic Sensor for Window: For intruder Detection on Window.
- Ultrasonic Sensor for Door: For intruder Detection on Door.
- When we are talking about security then we have to take care of door and windows.
- That's why I have placed two sensors on each of them. If someone tries to break the window then the vibration sensor will sense it and if someone tries to open the window then ultrasonic sensor will detect it.
- The same will happen for the door.
- So, whenever any of these seven sensors will get activated then the buzzer will go on and at the same time the user will receive a warning message.
- Moreover, I have also placed an LCD which will display the sensors' condition.
- Here's the Proteus Simulation for this GSM based Home Security System:
- You can see in the above figure that I have used all these seven sensors mentioned above.
- Moreover, I have used the GSM module, you can read more about it on GSM Library for Proteus.
- Moreover, we have the Power circuit and the Buzzer Driver Circuit at the bottom.
- Arduino UNO acting as the brain of this GSM Based Home Security System.
- Now, let's run this simulation and if everything goes fine then you will get something as shown in below figure:
- First of all, the system will configure the GSM module and then it will display two screens on LCD side by side.
- First LCD screen is shown in below figure:
- The first screen will show the status of first three sensors.
- Now here's the screenshot of second screen showing the status for next four sensors:
- That's how this project is working, now when any of these sensors got HIGH then buzzer will go ON and a message will be sent to the given number:
- Now, you can see when I click the Smoke Sensor HIGH, it got detected immediately and a warning message is sent to my number.
- I have explained this GSM based Home Security System in detail in the below video:
So, that's all for today. I hope you guys have enjoyed this awesome project. Before buying it, you must read it completely and also watch the video so that you are sure about what you are buying.