Arduino Projects for Beginners
Hello everyone! I hope you all will be absolutely fine and having fun. Today, I am going to elaborate you, how to make
Arduino Projects for beginners. Before gong into the detail of this tutorial first of all I would like to explain you a bit about Arduino. Arduino is an open source micro controller. A lot of help is available online so its user friendly hardware. Most of the students prefer to do work on this device.
Arduino is a low cost high performance device. Due to its cost effectiveness and open source feature it is commonly available in the market these days. An amazing thing about Arduino is that students can take help online with a lot of examples regarding any of the task. There are thousands of Arduino projects are available online from beginner level to the major real life projects. Students can make their own projects without having a lot of programming experience. Arduino kits for the beginners are also available in the market now a days. These kit usually consist of an Arduino board, jumper wires, motors, LED's, sensors, relays etc. Arduino has a very wide of real life applications including automation, robotics, remote control, LED's, environmental sensing, Internet of Things (IoT), display, monitoring etc. Further detail about this tutorial will be given later.
Arduino Projects for Beginners
In this section of the tutorial Arduino Projects for beginners, I will elaborate you how to make basic and very simple projects using Arduino which will lead you to the better and better understanding of Arduino environment later. With the help of such a projects you will be much confident and will be able to make large projects too. So here I am going to share some of the basic and beginners level Arduino projects from my blog.
Arduino Basic Projects
In this section I will provide Proteus ISIS libraries for the different Arduino boards e.g. Arduino Nano, Arduino UNO, Arduino Mega 2560 etc and other different projects too. Here is the list of those projects.
- Getting Started with Arduino Software
- Arduino Library for Proteus
- Arduino UNO Library for Proteus
- Arduino Genuino Library for Proteus
- Arduino Lilypad Library for Proteus
- Arduino Mega 2560 Library for Proteus
- Arduino Nano Library for Proteus
- Arduino Pro Mini Library for Proteus
- Arduino UNO PCB Design for Proteus
- Arduino Library for Seven Segment Display
- How to get .hex File from Arduino
- How to use Arduino Software Serial
- How to use Arduino Serial Flush
- How to use Arduino Serial Read
- Ultrasonic Sensor Library for Proteus
- These are the very basic Arduino Projects, a student must go through all of these projects for the better understanding of the other projects.
- Now, I am going to share all of the mini projects designed by our team using Arduino board.
1. A Simple Arduino LED Example in Proteus
In this tutorial I have shared an LED control example using Arduino UNO in Proteus ISIS. I have designed the circuit to control a single LED using Arduino in Proteus. First I have testes and verified the control of an LED using Arduino.
After its successful testing I have designed another circuit in Proteus to control a bundle of LED using the Same Arduino board. You can also check the blinking of an on board LED attached to the pin 13 of Arduino board. I have provided the complete Proteus ISIS design and Arduino source code for your easiness.
- You can download the entire package here by clicking on the button below.
Download Simulation
- Download .rar file, extract it and enjoy the simulation.
2. Circuit Designing of LCD with Arduino in Proteus
In this tutorial I have shared the design of a circuit for LCD interfacing with Arduino UNO in Proteus ISIS. I have used LCD here basically for debugging purpose in order to check whether the Arduino source code is in working condition or not.
I have designed the Proteus simulation first and then I wrote source code in Arduino software. At the end after uploading .hex file in Arduino I have verified the code as show in the figure.
- You can download the entire package here by clicking on the button below.
Download Simulation
- Click on the button above and go through the detailed discussion.
3. Interfacing of Keypad with Arduino in Proteus ISIS
In this article I have elaborated the circuit designing of keypad with Arduino UNO. I have used 4*3 keypad. Keypads are most common in a lot of real life applications such as calculators, laptops, ATM machined etc. The functionality of keypad is based on matrix systems.
I have interfaced Arduino UNO, LCD and keypad in such a way that the text is displayed on LCD with respect to the corresponding buttons pressed from the keypad.
- You can download the entire package here by clicking on the button below.
Download Simulation
- Download the file, extract it and enjoy the simulation.
4. Scrolling Text on LED Matrix 8*8 using Arduino in Proteus ISIS
This part of this tutorial will explain the design for scrolling text on LED matrix 8*8 using Arduino in Proteus ISIS. I have used an LED matrix. It is basically used to display long messages that we want to write on it.
I have designed the complete circuit simulation in Proteus ISIS. Then I have written the Arduino source code. After uploading the code I have verified the results as well. They were absolutely perfect. Our team has done a lot of hard work to design this project. So, I have imposed a very lost on it that a student can easily buy this project even with his pocket money.
- You can buy this project here by clicking on the button below.
Buy Simulation & Arduino Source Code
5. Ultrasonic Sensor Simulation in Proteus
This article presents the detailed discussion about the circuit designing for interfacing of SONAR with Arduino UNO. I have used the library for ultrasonic sensor whose link is given above. This sensor is very to interface using this library.
I have shared three type of examples regarding ultrasonic sensor interfacing with Arduino in Proteus ISIS. These examples include ultrasonic sensor interfacing using buttons, as a proximity switch and as a switch. I have provided both Proteus simulation as well as Arduino source code.
- You can download the entire package here by clicking on the button below.
Download Simulation
- Download the file, extract it and enjoy the simulation.
6. Interfacing of Temperature Sensor 18B20 with Arduino
The detailed discussion about circuit designing and interfacing of temperature sensor with Arduino UNO is given in this section of the tutorial Arduino projects for beginners. I have used non-water proof temperature sensor.
I have used an LCD as well to print the values obtained from the temperature sensor. We can get the values of temperature in Celsius using 18B20. There is a library for Arduino while interfacing 18B20 with it. I have shared that library too.
- You can download the entire package containing both simulation and Arduino library for 18B20 here by clicking on the button below.
Download Library & Simulation
- Download the file, extract it and enjoy the simulation.
7. Interfacing of Temperature Sensor LM35 with Arduino in Proteus ISIS
This section of the tutorial Arduino projects for beginners, will provide you the discussion about the circuit designing of L35 interfacing with Arduino in Proteus. LM35 is a low cost sensor as compared to the other temperature sesnsors e.g. 18B20.
I have designed the circuit in Proteus ISIS first and then I have written the code in Arduino software. After that I have tested the written code and verified the results. There were absolutely accurate. I have provided both simulation and code for free.
- You can download the entire package here by clicking on the button below.
Download Simulation & Code
- Download the file, extract it and enjoy the simulation.
8. Interfacing PIR Sensor with Arduino
The detailed discussion about the interfacing of PIR sensor with Arduino is given in this section of the tutorial Arduino projects for beginners. PIR sensor is designed for motion detection purposes. PIR sensor is a passive device and does not generate its own voltages and energy.
I have provided the complete circuit diagram of PIR interfacing with Arduino as well as the source code in Arduino software. You can also read the detailed discussion here by clicking on the button below.
Download Simulation
- Download source code and circuit diagram and enjoy the simulation.
9. Interfacing Flame Sensor with Arduino
In this section of the tutorial Arduino projects for beginners, I have given the detailed discussion about interfacing flame sensor with Arduino UNO. Flame sensor is designed basically fire detection purposes or you can say for temperature monitoring purposes. You have to set a threshold value and above that value an LED on the top of the sensor will be turn on as an indication.
I have designed its Proteus ISIS simulation first. Then I have written its source code in Arduino software. I have uploaded the code in Arduino in Proteus and observed the results, they were quite accurate. You have to change the state of logic state from
0 to
1. As the state becomes
1 the sensor will start working and a corresponding test will be displayed on LCD. I have provided the complete simulation and source code for this project.
- You can download the entire package here by clicking on the button below.
Download Simulation & Arduino Source Code
- Download source code and circuit diagram and enjoy the simulation.
10. Interfacing NRF24L01 Sensor with Arduino
This section of the tutorial Arduino projects for beginners, will give you the detailed discussio nabout the interfacing of NRF24L01 sensor with Arduino UNO. NRF24L01 is basically used for wireless communication between two different nodes.It operates on a frequency equal to WiFi frequency i.e. 2.4GHz. This sensor has a capability to send and receive data at the same time.
I have provided Arduino library for NRF24L01, complete circuit diagram and Arduino source code for this project for free. You can easily design your own circuit with the help of this article.
- You can download the entire simulation and source code here by clicking on the button below.
Download Simulation & Arduino Source Code
- Download source code and circuit diagram and enjoy the simulation.
11. Interfacing RFID RC522 with Arduino
In this section I will elaborate you the method for interfacing RFID RC522 with Arduino. I have used a breadboard and jumper wires to make a connection between RFID RC522 and Arduino UNO. RFID RC522 is used in the projects where there is a need of wireless communication between laptop/PC and the micro controller.
I have provide the pins configuration of Arduino as well as RFID RC522 sensor. I have also provided the library for RFID, a complete circuit diagram of in terfacing this module with Arduino as well as the source code to operate this module.
- You can download the library, circuit diagram and source code here by clicking on the button below.
Download Simulation & Arduino Source Code
- Download source code and circuit diagram and enjoy the simulation.
12. Control Servo Motor with Arduino in Proteus
This section of the tutorial Arduino Projects for Beginners, will provide explanation about control of a servo motor with Arduino in Proteus ISIS. Servo motor is commonly used in the projects where there is a need of high precision like CNC machines, robotics are such fields where high precised results are required. So, servo motors are the best option in such cases.
I have designed a complete circuit for interfacing of a stepper motor with Arduino UNO in Proteus ISIS. I have provided the complete Arduino source code as well. After uploading the source code in Arduino you will be able to control the servo motor in Proteus ISIS.
- You can download the complete simulation and source code here by clicking on the button below.
Download Simulation & Arduino Source Code
- Download source code and circuit diagram and enjoy the simulation.
13. Home Automation Project using XBee and Arduino
In this tutorial I have explained all of the steps about making a home automation project using XBee and Arduino UNO. Now a says, since every thing is going under automation. So, I thought to design a pretty simple automation projects named as home automation project. Home automation project has the features e.g. you can control the entire appliances of the home from your PC or Laptop sitting anywhere in the world. This features required internet services.
First of all I have designed the complete circuit as shown in the figure as well. I have designed the circuit to control the home using remote. I have written Arduino source code and after uploading the code in Arduino I have tested the projects and it was operating well. Our team has designed this project with a lot of hard work so we have imposed a very small amount of cost on it. Even a student can but this project with his/her pocket money.
- You buy the complete simulation as well the Arduino source code here by clicking on the button below.
Buy Simulation & Arduino Code
14. GSM Based Home Security System using Arduino
In this section of the tutorial Arduino projects for beginners, I have explained all of the necessary steps to design a GSM based home security system using Arduino. Some of people are very conscious and they want to secure there houses at any cost. So basically this type of project is pretty suitable for them.
I have designed a complete Proteus ISIS simulation for home security system using Arduino and GSM. Then I have written a complete Arduino Source code and after uploading it on the Arduino board in Proteus I have tested the results which were quite efficient and precise. This project took a lot of hard work and time. So, we have imposed a small amount of cost on it as well.
- You can buy this project easily here by clicking on the button below, its not costly at all.
Buy Simulation & Arduino Code
This tutorial contains a detailed discussion of
Arduino Projects for Beginners. I have a lot of basic Arduino projects. Some of them were free of cost and some projects are assigned with a small amount cost. I have tried to share different easy and moderate level Arduino projects. If you have any problem you can freely ask us. Me and my team is 24/7 available here to entertain you and to help you out in some good manner. I will share other informative and helpful tutorials in my upcoming articles. Till then, Taker Care :)
Servo Motor Control using Arduino
Hello everyone! I hope you all will be absolutely fine and having fun. Today, I am going to tell you about how to design an algorithm for
Servo Motor Control using Arduino. First of all I would like to tell you a bit about the servo motors. Servo motors are small devices having an output shaft. We can adjust this shaft in different angular positions by continuously sending the servo coded signal. Servo motor maintains the angular position of the shaft as long as the coded signal is present at the input. If the applied coded signal changes, angular position of the shaft of a servo motor also changes correspondingly. If you are working on Servo Motor then i would suggest you to must have look at this tutorial
Servo Motor control in Proteus, as its always a best practice to design simulation first.
In my previous tutorials I have controlled the direction and speed of the both DC as well as of the stepper motor. Ordinary DC motor has only two input terminals. When power is supplied it simply starts to rotate continuously. In comparison to the DC motor servo motor has three wires. Using servo coded signal we can send commands to the servo motor that in what direction and with what angle it has to rotate. If we want to add motion in our electrical projects, servo motor will be an easy way to do so. Servo motor has a wide range of applications in our daily life e.g elevator, cars, robotics, puppets, remote controlled airplanes and cars, conveyor belts, solar tracking system, antenna positioning, textiles etc.Moreover, I have also controlled the
Servo Motor with PIC Microcontroller, so if you are using PIC Microcontroller then have a look at that one.
Servo Motor Control using Arduino
In the tutorial
Servo Motor Control using Arduino, I will tell you step by step procedure for connecting the servo motor with Arduino and how to design a algorithm in Arduino software to control its angular position with the help of servo coded signal. First of all I would like to tell you about the hardware components necessary for Servo Motor Control using Arduino.
- You can download the complete Arduino source code here by clicking on the button below.
- Just download .rar file, extract it and enjoy the complete source code.
Hardware Required
A complete list of the hardware equipment necessary for this task is given below.
- Computer/Laptop
- Arduino UNO (Micro Controller)
- Appropriate USB Cable
- Servo Motor (4.8 to 6.0V with 2.5 kgf-cm torque)
- Jumper Wires (Cables)
Arduino UNO acts as the backbone of this task. It sends the servo encoded signal to the servo motor to control its angular movement. Arduino UNO board is shown in the figure below.
Servo Motor having torque of 2.5kgf-cm and 4.8-6.0v is used for this project. The selected servo motor is shown in the figure below. Power of 5V is supplied to the servo motor from the Arduino UNO board.
Jumper Wires are used to make the connections of the all the components in order to make the complete circuit with proper working. Jumper wires are shown in the figure below.
Circuit Diagram
- The circuit diagram for Servo Motor Control using Arduino is shown in the figure below.
- I have supplied 5V to red wire of the servo motor as shown in the above figure.
- The black wire is the attached to the GND pin of the Arduino UNO.
- Yellow wire is basically the wire used to control the angular motion as well as the angle of the servo motor.
Source Code Description
- The complete Arduino source code for Servo Motor Control using Arduino is given below.
- You have to just copy the code given below and to past it in your Arduino software.
- By uploading the source code to your Arduino board you will be able to control the servo motor using Arduino.
#include <Servo.h> //library for servo motor
Servo myservo; // servo motor object for its control
int ang = 0; // a variable to store the servo angle
void setup() {
Serial.begin(9600);
myservo.attach(8); // servo motor is attached to pin no 8 og Arduino
}
void loop() {
for (ang = 0; ang <= 180; ang += 5) // goes from 0 degrees to 180 degrees with a step og 5 degree
{
myservo.write(ang); // rotates the servo to rotate at specific angle
delay(50); // adding delay of 50 msec
Serial.println("Motor has started its rotation from 0 to 180 degress");
}
for (ang = 180; ang >= 0; ang -= 5) // goes from 180 degrees to 0 degrees with a step of 5 degree
{
myservo.write(ang); // rotates the servo to rotate at specific angle
delay(50); // adding delay of 50 msec
Serial.println("Motor has started its rotation from 180 to 0 degress");
}
}
- First of all I have inserted the library for servo motor.
- Then I have created a servo object and declared the initial angle of the servo motor.
- After that I have have adjust the baud rate, the rate at which Arduino communicates with the laptop/computer.
- Then I have defined the pin at which the servo motor is attached to the Arduino UNO's board.
- Inside the main loop, I have applied the condition that in between 0 and 180 degrees, the servo motor's angle will be increased with different steps and each step has 5 degrees of angular movement.
- When maximum limit is reached, the angle will be reduced from 180 to 0 degree with different steps, each step having 5 degrees of angular movement.
- That was the brief description of the Arduino complete source code designed for Servo Motor Control using Arduino.
That is all from the tutorial Servo Motor Control using Arduino. I hope you all have enjoyed this tutorial. If you face any sort of problem you can ask me freely in comments any time you want without even feeling any kind of hesitation. I will try my level best to solve your issues in a better way, if possible. I will explore Arduino by making different projects on it and will share all of them with all of you as well in my later tutorials. Till then, Take care :)
DC Current Sensor ACS712 Arduino Interfacing
Hello everyone! I hope you all will be absolutely fine and having fun. Today, I am going to share my knowledge with all of you guys about
DC Current Sensor ACS712 Arduino Interfacing. First of all, I would like to tell you about importance of current sensing/measuring. Sensing the amount of current passing through any circuit can be useful in a lot of applications. For example, in low power consuming equipment, current sensing will be helpful to understand the system's impact on its battery life. The current sensing can also be used to make the decisions regarding safety in over current protection circuits.
Simply, we can say that sensing and controlling the flow of the current through the circuits is now a fundamental requirement e.g. over current protection circuits, battery chargers, watt meters, power supplies etc.
DC Current Sensor ACS712 Arduino Interfacing
Basically, there are two types of current senors
AC and DC. But, in the tutorial,I am going to do the
DC Current Sensor ACS712 Arduino Interfacing, and we will learn about the sensing of the DC current. I will use
ACS712 DC current sensor for sensing the DC current.
- You can download the complete Arduino source code there.
- Download .rar file, extract it and upload code in your Arduino board:
Components Required
Here I am going to tell you about the components necessary for this projects. The list of all the components is given below.
- Arduino UNO
- DC Current Sensor (ACS712)
- DC Load
- Wero Board
- Soldering Iron
- Soldering Gum
- Jumper wires
- Power Supply (12V)
- 20 x 4 LCD
Description of the Components used
[ultimate_spacer height"10"]
In this section of the tutorial Interfacing DC Current Sensor with Arduino, I will explain the reasons why I have used the specific components for this project.
- Arduino UNO acts as the back bone of the project. It manipulates the whole source code uploaded to the board, prints the desired data on the serial monitor and also prints the executed commands on the LCD. You can use the same code of other Arduino boards as well i.e. Arduino Nano, Arduino Pro Mini etc.
- Power Supply of 12V is used to turn the entire system ON. Because, we can not test and verify our system until we have not switched it ON. Power supply used for this project is shown in the figure. I have used this 9A Battery (I have this available) but you can use 1.5A small battery as well. Battery selection depends on your projects' power consumption.
- LCD is used to display the digital values of the data which has been printed on the serial monitor of the Arduino software i.e all the executed commands will be printed on the LCD as well. The LCD which I have used for this is shown in the figure.
- Jumper Wires are used to make the connections of the all the components, in order to make the complete circuit with proper working. Jumper wires are shown in the figure. There are 3 types of Jumper wires available: Male to Male, Male to Female & Female to Female.
- ACS712 is used to sense the Direct Current (DC) flowing through the any circuit. The DC current sensor used is shown in the figure.
Flow Chart
[ultimate_spacer height="5"]
- Here, I would like to explain the entire algorithm with the help of a flow chart for DC Current Sensor ACS712 Arduino Interfacing.
- The flow chart for this project DC Current Sensor ACS712 Arduino Interfacing is shown in the figure.
- First of all, I have initialized the Serial Port.
- After that we are reading the value from our current sensor ACS712.
- Then data will be displayed on the LCD and Serial Monitor.
Circuit Diagram
- The complete wiring diagram for this project is shown in the figure below.
- You can run this project properly, by making the circuit first, identical to the circuit diagram shown in the figure above.
- The digital pin 0 of the Arduino UNO will help us in reading the data from the sensor.
- The other two pins of the sensor are connected to the supply of 5V and ground respectively as you can see from the above figure.
Source Code Description
- The source code for this project DC Current Sensor ACS712 Arduino Interfacing is given below.
- You have to just copy and paste the code given below in your Arduino software after properly interfacing DHT11 with the Arduino.
- After uploading the code onto your Arduino board you will be able to observe the humidity and temperature and humidity level on serial monitor.
// include the library code:
#include <LiquidCrystal.h> //library for LCD
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
//Measuring Current Using ACS712
const int analogIn = 0; //Connect current sensor with A0 of Arduino
int mVperAmp = 185; // use 100 for 20A Module and 66 for 30A Module
int RawValue= 0;
int ACSoffset = 2500;
double Voltage = 0; //voltage measuring
double Amps = 0;// Current measuring
void setup() {
//baud rate
Serial.begin(9600);//baud rate at which arduino communicates with Laptop/PC
// set up the LCD's number of columns and rows:
lcd.begin(20, 4); //LCD order
// Print a message to the LCD.
lcd.setCursor(1,1);//Setting cursor on LCD
lcd.print("www.TheEngineering");//Prints on the LCD
lcd.setCursor(4,2);
lcd.print("Projects.com");
delay(3000);//time delay for 3 sec
lcd.clear();//clearing the LCD display
lcd.display();//Turning on the display again
lcd.setCursor(1,0);//setting LCD cursor
lcd.print("Reading Values from");//prints on LCD
lcd.setCursor(1,1);
lcd.print("DC Current Sensor");
lcd.setCursor(5,2);
lcd.print("ACS 712");
delay(2000);//delay for 2 sec
}
void loop() //method to run the source code repeatedly
{
RawValue = analogRead(analogIn);//reading the value from the analog pin
Voltage = (RawValue / 1024.0) * 5000; // Gets you mV
Amps = ((Voltage - ACSoffset) / mVperAmp);
//Prints on the serial port
Serial.print("Raw Value = " ); // prints on the serial monitor
Serial.print(RawValue); //prints the results on the serial monitor
lcd.clear();//clears the display of LCD
delay(1000);//delay of 1 sec
lcd.display();
lcd.setCursor(1,0);
lcd.print("Raw Value = ");
lcd.setCursor(13,0);
lcd.print(RawValue);
Serial.print("\t mV = "); // shows the voltage measured
Serial.print(Voltage,3); // the '3' after voltage allows you to display 3 digits after decimal point
lcd.setCursor(1,1);
lcd.print("Voltage = ");
lcd.setCursor(11,1);
lcd.print(Voltage,3);
lcd.setCursor(17,1);
lcd.print("mV");//Unit for the voltages to be measured
Serial.print("\t Amps = "); // shows the voltage measured
Serial.println(Amps,3);// the '3' after voltage allows you to display 3 digits after decimal point
lcd.setCursor(1,2);
lcd.print("Current = ");
lcd.setCursor(11,2);
lcd.print(Amps,3);
lcd.setCursor(16,2);
lcd.print("A"); //unit for the current to be measured
delay(2500); delay of 2.5 sec
}
- I am going to explain you that how this code is working!
- Then I have defined the library for LCD.
- I have defined the pin at which DC current sensor is attached with the Arduino board.
- Then I have defined the Arduino pins at which the LCD is interfaced.
- Then by opening the serial port I have started to print the level of temperature and humidity on the serial monitor as well as on the 20×4 LCD.
- At the end, I have added the delay of few seconds so that the speed of the data to be printed on the serial monitor can be reduced to some extent in order to observe properly.
- This was the brief description of the source code.
This is all from the tutorial DC Current Sensor ACS712 Arduino Interfacing. I hope you all enjoyed this tutorial. If you face any sort of problem you can ask me anytime in comments without even feeling any kind of hesitation. I will try my level best to solve your issues in a better way, if possible. I will explore Arduino further in my later tutorials. Till then, Take care :)
Scrolling Text on LCD with Arduino
Hello everyone! hope you all will be fine. In this article I am going to share the knowledge about displaying
Scrolling Text on LCD with Arduino. A Liquid Crystal Display is usually known as
LCD in the market. It is a display unit made up of liquid crystal. When we want to made electronics based projects, we need a device on which we can show the system’s output and the desired messages. There are a lot of such devices which are helpful to display the output messages and the most common is a seven segment display.
Alternate good option is LCD, which are now available in different size having different qualities. 16×2 LCD Module is a most frequently used device for the electronic projects out of all the other types of LCD’s available in the market. 32 ASCII characters can be displayed on it simultaneously in 2 rows i.e. it has a capacity to show 16 characters per row. 20×4 LCD, 128×64 graphical LCD and 2.4 inch TFT Touch screen LCD are also used commonly for the electronic projects now-a-days in the market and as well as in the institutions.
Scrolling Text on LCD with Arduino
In the tutorial
Scrolling Text on LCD with Arduino, we are going to learn how to interface a 16×2 lcd to Arduino UNO and how to display the scrolling text on LCD in Proteus ISIS. First I would like to write a simple code to print something on the LCD and then I will update the previously written code to scroll the text printed already on the LCD.
- You candownload the complete simulation here by clicking on the button below.
Arduino Source Code
- Just download .rar file, extract it and enjoy the complete simulation.
Interfacing 16×2 LCD to Arduino uno
LCD modules are most frequently used devices specially in Arduino based electronic projects. So it is essential to share this tutorial based on interfacing LCD module to Arduino UNO and displaying
scrolling text on LCD with all of you. Interfacing of an Arduino UNO to 16×2 LCD is elaborated in this section. The selected LCD module has 16 pins. You can operate this module in 4 bit mode by using only four data lines (from D4 to D7) or 8 bit mode by using all the eight data lines (from D0 to D7).
In this article we are using the LCD module operating in the 4-bit operational mode i.e. we are using only four data pins. I have divided this tutorial in two parts. First of all, I will explain how to display a simple text messages on the 16×2 LCD with Arduino UNO and secondly I will show that how to display
scrolling text on the same LCD interfaced with Arduino UNO. Before the explanation of this design, let’s have a look at the selected LCD. You should also have a look at this
New LCD Library for Proteus.
Designed Circuit in Proteus ISIS
Find Arduino UNO and a 16×2 LCD in the components library of proteus ISIS ISIS. If arduino library is present in your Arduino software then arduino will be shown in the components library otherwise you have to install Arduino library for proteus ISIS. Wiring diagram of the LCD module with Arduino UNO in proteus ISIS is shown in the figure below. You can download this Proteus Simulation from
Interfacing of LCD with Arduino.
- .Now just copy and paste the given source code in the Arduino software
#include<LiquidCrystal.h> //Library for LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);// LCD pins at which it is attached to the Arduino
void setup() //method used to run the source for the one time onlys
{
lcd.begin(16, 2);//LCD order i.e. 16 columns & 2 rows
lcd.print("The Engineering Projects ");//prints on LCD
lcd.setCursor(0,1);//setting cursor on LCD
lcd.print("www.TheEngineeringProjects.com");//prints on LCD
delay(1000);//delay of 1 sec
}
void loop() //method to run the source code repeatedly
{
lcd.noDisplay();//turn off the display of LCD
delay(250);//delay to 0.25 seconds
lcd.display();//turning on the LCD display
delay(250); //delay of 0.25 seconds again
}
- Now compile the source code and get hex file from it as shown in the figure below.
- Copy this address as shown in the figure above.
- Double click on Arduino UNO in proteus, a new window will be opend as shown in the figure below.
- Paste that address in the file menu as encircled in the figure below.
- Run the proteus simulation from the Arduino software from the upper left corner of the software.
- If everything goes perfect you will see the output as shown in the figure below.
- Copy and paste the source given below in your Arduino software.
#include <LiquidCrystal.h>//Library for LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);//LCD pins at which it is attached to the Arudino
void setup()//method used to run the code for once
{
lcd.begin(16, 2);//LCD order
lcd.print("The Engineering Projects ");//prints on LCD
lcd.setCursor(0,1);//Setting the cursor on LCD
lcd.print("www.TheEngineeringProjects.com");//prints on LCD
delay(1000);//delay of 1 second
}
void loop() //used to run the code repeatedly
{
for(int PositionCount=0;PositionCount<13; PositionCount++)//loop for scrolling the LCD text
{
lcd.scrollDisplayLeft();//builtin command to scroll left the text
delay(150);// delay of 150 msec
}
for(int PositionCount=0; PositionCount<29; PositionCount++)
{
lcd.scrollDisplayRight(); //builtin command to scroll right the text
delay(150);//delay of 150 msec
}
for(int PositionCount=0; PositionCount<16; PositionCount++)//loop for scrolling the text
{
lcd.scrollDisplayLeft();//builtin command to scroll the text left again
delay(150);//delay of 150 msec
}
}
- Compile the code given above.
- Obtain the hex file as I told above in the figure.
- And open it in your proteus as I described above.
- Run the simulation like the I have previously done.
- You will be able to see the scrolling text on LCD as shown in the figure below.
- That all from this article to show Scrolling Text on LCD using Arduino.
- Was it difficult? I don't think so :)
So, that is all from the tutorial Scrolling Text on LCD using Arduino. I hope you enjoyed this tutorial. If you face any sort of problem, you can ask me in the comments any time. I will try my level best to solve your issues in a better way, if possible. I will explore Arduino by making different projects on it and will share them with you as well. Till then, take care :)
Stepper Motor Speed Control using Arduino
Hello everyone! I hope you all will be absolutely fine and fun. Today, I am going to tell you that how to make a simple algorithm for
Stepper Motor Speed Control using Arduino. I have already discussed with you about
DC Motor Direction Control using Arduino,
Matlab and NI LabVIEW. Moreover, I have also discussed the
DC Motor Speed Control using Arduino,
Matlab and LabView. If you are working on Stepper Motor, then you must have a look at
Stepper Motor Direction Control using Arduino,
Stepper Motor Direction Control using Matlab and Stepper Motor Direction Control using NI LabVIEW. Now, in this tutorial I will explain you about the program which will helpful for Stepper Motor Speed Control using Arduino. Before going into the details of this tutorial you must have go through my previous tutorials because I am using the same hardware. So, they will be a lot helpful for the better understanding of this tutorial.
In this tutorial I will explain you about making an Arduino program for
Stepper Motor Speed Control using Arduino with the help of the serial communication. If the stepper motor is rotating at its maximum speed and you are continuously sending the command through the serial port to reduce its speed, it s speed will be reduced in proportion to the number of command sent through the serial port. Similarly the same procedure will be followed to increase the speed of the stepper motor.
Stepper Motor Speed Control using Arduino
In the tutorial Stepper Motor Direction Control using Arduino, I will explain you about making an algorithm to run the stepper motor at different speed. If the stepper motor is already running at its maximum speed and you want want to accelerate it further then nothing will happen to the speed of the stepper motor. If the stepper motor is rotating slowly and you enhance its speed, then the speed of the motor will increase in proportion to the number of accelerating command sent through the serial port.
- You can download the complete Arduino source code here by clicking on the button below.
Download Arduino Code
- Download .rar file, extract it and enjoy the complete source code.
Flow Chart
- I have made a flow chart so that you can easily understand the entire algorithm because sometimes it becomes difficult to understand the algorithm with the help of the source code.
- Flow chart for the Stepper Motor Speed Control using Arduino is shown in the figure below.
- First of all we need to start the serial port so that our communication could be started.
- Then there is a method to check the speed, if the speed is greater than the maximum speed of the stepper motor then the program will wait for the next command.
- If the stepper motor is not rotating with its maximum speed then we can increase its speed.
- Similarly if the minimum speed of the stepper motor is reached then the program will rotate for the next commands.
- If the minimum limit of the speed of the stepper motor is not reached then we have a option to reduce its further.
- At the end we should close the serial port so that exchange of unnecessary commands through the serial port could be avoided.
Block Diagram
- Block diagram will be helpful for use for the better understanding of the exchange of information.
- It tells us that how the information is exchanged sequentially among all the components used.
- Block diagram is shown in the figure below.
- Arduino UNO communicates with the L298 motor controller to control the speed of the stepper motor.
- L298 Motor controller manipulates the Arduino's commands and starts to control the speed of the stepper motor.
Arduino Code Description
In this section of the tutorial Stepper Motor Speed Control using Arduino, I am going to elaborate you about the Arduino source.
- I have made two different functions for increasing (accelerating) the speed of the stepper motor and for decreasing (deaccelerating) the speed of the stepper motor respectively.
- I have declared a variable named as count.
- In Accelerate function, you have to send the command H through the serial port to increase the speed of the stepper motor.
- In this function, I am continuously increasing the value of the count i.e as many times you send the command H the speed of the stepper motor will increase continuously.
- The source code of the Accelerate function is given below.
void Accelerate_Motor()
{
count=count+10; //Speed will increase continuously as we continue to press H
if (count>120) //Speed must not be greater than 120
{
count=120;
}
Serial.println("Accelerating"); //printing on the serial port
Serial.println("");//prints blank line on the serial port
myStepper.step(stepsPerRevolution);//counter clockwise rotation
myStepper.setSpeed(count); //Updating the speed of the motor
lcd.setCursor(3,0);//setting LCD cursor
lcd.print("Acelerating"); //printing on LCD
}
- In Deaccelerate function, you have to send the command L through the serial port to increase the speed of the stepper motor.
- In this function, I am continuously reducing the value of the count i.e as many times you send the command L the speed of the stepper motor will reduce continuously.
- The source code of the Deaccelerate function is given below.
void Deaccelerate()
{
count=count-10; //reducing the speed of the motor
if (count<20) //speed of the motor must not be less than 20
{
count=20;
}
Serial.println("Deaccelerating"); // prints on the serial port
Serial.println(""); //prints blank line on the serial port
myStepper.step(stepsPerRevolution);
myStepper.setSpeed(count); //Updating the speed of the motor
lcd.setCursor(3,0); //setting cursor on LCD
lcd.print("Deaccelerating"); //prints the command on LCD
}
- In the main source inside the loop I am calling both of these Accelerate and Deaccelerate functions.
- The executed commands will also be printed on the LCD (Liquid Crystal Diode).
- The main source code is given below.
#include <LiquidCrystal.h>//Library for LCD
#include <Stepper.h> //Library for Stepper motor
const int stepsPerRevolution = 255;
// initialize the stepper library on pins
Stepper myStepper(stepsPerRevolution, 4, 5, 6, 7);
char data;
int count = 120;
//LCD pins assigning
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
void setup() {
// set the speed at 60 rpm
myStepper.setSpeed(60);
// initialize the serial port:
Serial.begin(9600);// rate at which the arduino communicates
lcd.begin(20, 4);//LCD type
lcd.setCursor(3,0);//setting LCD cursor and printing on it
lcd.print("Stepper Motor");
lcd.setCursor(6,1);
lcd.print("Speed");
lcd.setCursor(5,2);
lcd.print("Control");
lcd.setCursor(2,3);
lcd.print("via Arduino UNO");
delay(3000);
lcd.clear ();//Clearing the LCD screen
lcd.setCursor(0,2);
lcd.print("www.TheEngineering");
lcd.setCursor(4,3);
lcd.print("Projects.com");
}
void loop() {
if(Serial.available())
{
data = Serial.read(); //Reading the data from serial port
}
if(data == 'C'){Clockwise();} //Clockwise rotation
if(data == 'A'){AntiClockwise();} //Anti-clockwise rotation
if(data == 'S') //stopping the stepper motor
{
data = 0;
lcd.setCursor(3,0);
lcd.print("No rotation");
Serial.println("No rotation");//print on the serial
}
if(data == 'H'){Accelerate_Motor();}
if(data == 'L'){Deaccelerate();}
}
Complete Hardware Setup
- In this section of the tutorial, I will show you the complete hardware setup that I have used for this project.
- Hardware consists of 12V power supply, Arduino UNO, L298 motor controller.
- When you upload the code to the Arduino board the system will look like the figure shown below.
- When you press H to increase the speed of the stepper motor, the statement accelerating will be printed on the LCD.
- The printed executed command is printed on the LCD and is shown in the figure below.
- When you press L to reduce the speed of the stepper motor, the statement Deaccelerating will be printed on the LCD.
- The printed executed command is printed on the LCD and is shown in the figure below.
That is all from the tutorial Stepper Motor Speed Control using Arduino. I hope you all have enjoyed this tutorial. If you face any sort of problem regarding anything you can ask me anytime without even feeling any kind of hesitation. I will try my level best to solve your issues in a better way if possible. I will explore Arduino by making further projects and I will share them with all of you as well in my later tutorials. So, till then, Take Care :)
Stepper Motor Direction Control using Arduino
Hello friends! I hope you all will be absolutely fine and having fun. Today, I will elaborate you that how can we make a simple algorithm for
Stepper Motor Direction Control using Arduino. In my previous tutorials I made algorithm for
DC Motor Direction Control using Arduino,
DC Motor Direction Control using Matlab,
DC Motor Speed Control using Arduino and
DC Motor Speed Control using Matlab. Now, in this tutorial I will control a stepper motor using Arduino by entering the different commands through its serial port.
Before going into the detail of this tutorial, you must know the basic difference between stepper and DC motors. DC motors have only two input terminal one is positive and the other one is negative. You just have to provide the power supply and it will start rotating but this is not the case in stepper motor. The stepper motor which I will use in this tutorial, has six pins out of which four pins provide pulses or steps and the other two pins are power pins. So, in this tutorial I will control this six pins stepper motor using L298 motor controller and Arduino UNO board. Basically we can use stepper motor where precision is required. Stepper motor has wide range of applications e.g robotics, CNC machines, home automation etc. In simple word, we can say that stepper motor can be used where there is a need to move at particular angle. So, let's get started with Stepper Motor Direction Control using Arduino:
Stepper Motor Direction Control using Arduino
In this tutorial we will learn how to make a program for
Stepper Motor Direction Control using Arduino by sending dfferent commands from the serial port. First of all, I am going share the list of components used for this mini project.
- Arduino UNO
- Stepper motor (6 wire)
- L298 Motor Controller (H-Bridge)
- Voltage Regulator (7805)
- 1000uF
- Jumper Wires
- Solderig Iron
- Soldering Wire
I want to tell you a bit about the stepper motor because all the other components are discussed in detail in
DC Motor Direction Control using Arduino.
Stepper Motor
Basically, stepper motors are like the DC motors that rotate in discrete steps. They have multiple arranged coils and they are usually known as phases. Motor will rotate one step at a time if we energize each phase sequence. High levels of precision can be achieved by controlling the stepper motor with computer. Steppers motors are available in the market in many different sizes. The speed of the stepper motor is controlled by frequency of pulses generated. They have wide range of applications like hard disk drives, robotics, telescope, antenna, toys etc. A six wire stepper motor is shown in the figure below.
- You can download complete source code for Stepper Motor Direction Control using Arduino by clicking the below button:
Download Arduino Source Code
Selection of Wires
- I have used 6 wire stepper motor and each wire has its own function.
- I have first divided these six wires into two pair.
- Each pair is consisting of three wires out of which one wire is common and the other two generate pulses.
- The two pair of three wires are shown in the figure below.
- Then, I have chosen a common wire in each pair from which the resistance to the other two wires is common.
- I have checked the resistance from the common wire to the both of the other wires of the same pair.
- I found that the resistance from the common wire to both of the other wires is same.
- We can see in the figure above the blue, pink and white wires belong to the same pair out of which white is a common wire.
- Here is the screen shot of the figure when I found the resistance between white and blue wire and I found it to be 8.0 ohms.
- The screen shot of the above steps is shown in the figure below.
- After that. I checked the resistance between white and pink wire and found it to be 8.1 which is almost the same as 8.0 so, this shows that the white wire is common to both of the blue and pink wire.
- Here is the screen shot of the above step.
- Then I found the resistance between pink and blue wire and it was 15.6 which is exactly the double of the earlier resistance.
- It is shown in the figure below.
- I have connect the both common wires as shown in the figure below.
- Here's the video in which I have discussed it in detail How to identify the wires of Stepper Motor:
- The remaining four wires are used to generate pulses which are also know as steps
- I have connected theses four wires to the output pins OUT1, OUT2, OUT3 and OUT4 of the L298 micro controller.
- Input pins of L298 micro controller In1, In2, In3 and In4 are connected to the pin no 7, 6, 5 and 4 of the Arduino UNO's board respectively.
Note:
I have also controlled the stepper motor using PIC micro controller so I would suggest all of you to first go through that tutorial before going into the details of this tutorial.
Block Diagram
- I have made a simple block diagram for Stepper Motor Direction Control using Arduino, which will be helpful to clearly understand the algorithm and the assembling of the components of Stepper Motor Direction Control using Arduino.
- The screenshot of the block diagram is shown in the figure below.
- First of all we need a power supply to run the project properly.
- Arduino reads the commands from the serial port and sends to the L298 motor driver to rotate the stepper motor.
- The commands got printed on the LCD (Liquid Crystal Display).
Arduino Source Code Description
- The main function of the Stepper Motor Direction Control using Arduino is given below.
#include <LiquidCrystal.h>//Library for LCD
#include <Stepper.h> //Library for Stepper motor
const int stepsPerRevolution = 255;
// initialize the stepper library on pins
Stepper myStepper(stepsPerRevolution, 4, 5, 6, 7);
char data;
//LCD pins assigning
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
void setup() {
// set the speed at 60 rpm
myStepper.setSpeed(60);
// initialize the serial port:
Serial.begin(9600);
lcd.begin(20, 4);//LCD type
lcd.setCursor(3,0);//setting LCD cursor and printing on it
lcd.print("Stepper Motor");
lcd.setCursor(5,1);
lcd.print("Direction");
lcd.setCursor(5,2);
lcd.print("Control");
lcd.setCursor(2,3);
lcd.print("via Arduino UNO");
delay(3000);
lcd.clear ();//Clearing the LCD screen
lcd.setCursor(0,2);
lcd.print("www.TheEngineering");
lcd.setCursor(4,3);
lcd.print("Projects.com");
}
void loop() {
if(Serial.available())
{
data = Serial.read(); //Reading the data from serial port
}
if(data == 'C'){Clockwise();}//Clockwise rotation
if(data == 'A'){AntiClockwise();}//Anti-clockwise rotation
if(data == 'S')//stopping the stepper motor
{
data = 0;
lcd.setCursor(3,0);
lcd.print("No rotation");}
}
- In the code given above we have first initialized the LCD and Stepper motor libraries.
- Then, I assigned stepper motor pins at which it is connected to the Arduino.
- After that I initialized the LCD pins at which it is connected to Arduino UNO.
- Then I have made three different if statements, C for the clockwise, A for the anti clockwise rotation and S for the no rotation.
- Then in the loop I called clock wise and anti clockwise functions whose source code will be give and explained below.
- Then, I cleared the serial data in order to stop the rotation of the motor.
- The source code of the clockwise function is given below.
void Clockwise()//function for clockwise rotation
{
Serial.println("clockwise"); //printing on the serial port
Serial.println("");//prints blank line on the serial port
myStepper.step(stepsPerRevolution);//counter clockwise rotation
lcd.setCursor(3,0);//setting LCD cursor
lcd.print("Clockwise"); //printing on LCDa
}
- The source code for the anti clockwise function is given below.
void AntiClockwise()//function for anti clockwise rotation
{
Serial.println("anti-clockwise");//print on the serial
Serial.println("");//prints a blank line on the serial
myStepper.step(-stepsPerRevolution);//clockwise movement
lcd.setCursor(3,0);//setting LCD cursor
lcd.print("Anti-clockwise");//printing on LCD
}
- Now, open your Arduino software, just copy and paste the source code given above.
- Run the program and open the Serial Port at the top right of the Arduino software.
- Now, when you enter the command C stepper motor will start running in clockwise direction.
- If you send the command A through the serial port stepper motor will start to rotate in counter clockwise direction.
- If you send the command S the rotation of the stepper motor will be stopped.
Actual Hardware Setup
- The actual hardware operating setup for Stepper Motor Direction Control using Arduino is given in the figure below:
- Now, if you send the command C through the serial port the stepper motor will start to rotate in clockwise direction and the command will also be printed on the LCD.
- The screenshot of the printed command on LCD is shown in the figure below.
- Now, if you send the command A through the serial port the stepper motor will start to rotate in anti clockwise direction and the command will also be printed on the LCD.
- The screenshot of the printed command on LCD is shown in the figure below.
- Now, if you send the command S through the serial port the stepper motor will show no more rotation and the command will also be printed on the LCD.
- The screenshot of the printed command on LCD is shown in the figure below.
- Here's the complete video demonstration of Stepper Motor Direction Control using Arduino, I hope it will help as well:
That's all from the tutorial
Stepper Motor Direction Control using Arduino. I hope you enjoyed this tutorial. If you face any sort of problem, you can ask me anytime without feeling any kind of hesitation. I will try my level best to solve your problem in a better way if possible. I will explore Arduino by making different projects on it. Till then, Take care :)
DC Motor Speed Control using Arduino
Hello friends! I hope you all will be absolutely fine and having fun. Today, I am going to share my knowledge about how can you make a simple program for
DC Motor Speed Control using Arduino UNO. In my previous tutorial,
DC Motor Direction Control using Arduino, I have just controlled the DC motor in both directions at constant speed using Arduino. I have also performed the
DC Motor Direction Control in Matlab by sending different commands through serial port from Matlab and LabVIEW to the Arduino and then controlled the direction of rotation of DC motor. But in this tutorial I will rotate the same DC motor at variable speed in both clockwise and anti clockwise directions.
In my previous tutorial, we have seen that input pins
In1 &
In2 of motor control driver L298 (H-Bridge) are useful to control the direction of rotation of the DC motor. In this tutorial, I have controlled its speed as well by providing different voltage levels at the
enable pin of the DC motor control driver L298. It will be helpful to vary the speed of the DC motor in either clockwise or in anti clockwise direction. So, let's get started with
DC Motor Speed Control using Arduino UNO:
DC Motor Speed Control using Arduino UNO
In this tutorial we will learn that how to make an algorithm for DC Motor Speed Control using Arduino UNO. Speed control of any motor is always done y Pulse Width Modulation, abbreviated as PWM. PWM pulse can be generated using Arduino and L298 Enable Pin is used to get that PWM pulse and then it controls the motor speed accordingly. Before going into the further details I would like to tell you about the concept of PWM for controlling DC motor. Moreover, you can download the complete Arduino code for DC Motor Speed Control using Arduino by clicking the below button:
Download Arduino Source Code
Pulse Width Modulation (PWM)
PWM stands for Pulse Width Modulation. It basically describes the type of the digital signal. PWM technique is an excellent technique to control the analog circuits with microcontroller's digital PWM output. In this technique we can get analog results with the digital means. Digital control is used to create square wave. This pattern can vary voltages between full on i.e.
5V and full off i.e.
0V. The duration of on time i.e. when the the signal is present is known as
pulse width. PWM waves for the different duty cycles are shown in the figure below.
Duty cycle is basically the proportion of the time during which a system is operated. It can be expressed as a percentage. For example motor rotates for 1 second out of 100 seconds, it duty cycle can be represented as 1/100 or as 1%. For Arduino software coding the command
analogWrite(255) shows the maximum i.e. 100% duty cycle. To achieve 50% duty cycle we have to update this command to
analogWrite(127). Arduino UNO's pin no
3, 5, 6,10 and
11 are used as PWM pins. In this project we can control the speed of the DC motor by providing
high and
low voltages to the
enable pin of the motor control driver L298. For example, if a motor rotates with the maximum speed and 100% duty cycle at
12V and we provide it with the
6V then it will rotate with the half of the initial speed having 50% duty cycle.
Motor Controller L298
The pins
EnA and
EnB of the motor controller L298 are used as the PWM pins. We can rotate the DC motor at different speed providing different high and low voltage levels to these pins of the motor control driver. If we start to reduce the maximum voltage at which the motor rotates at maximum speed, the speed of the motor also starts to reduce. In this way these enable pins are helpful to control the speed of the DC motor.
Algorithm design and descrition
In this section of the tutorial
DC Motor Speed Control using Arduino UNO, I am going to explain you about designing as well as a detailed description of the designed algorithm. I will tell you about the entire algorithm in step by step procedure.
Note:Since you are working on the DC motor so you must also have a look at my previous tutorials, they will be helpful for you to simulate this project as well.
Open your Arduino software, copy and paste the source code given below in your software.
#include <LiquidCrystal.h>
//Keyboard Controls:
//
// C - Clockwise
// S - Stop
// A - Anti-clockwise
// Declare L298N Controller pins
// Motor 1
int count=255;
int dir1PinA = 2;
int dir2PinA = 5;
int speedPinA = 6; // PWM control
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
void setup() {
Serial.begin(9600); // baud rate
lcd.begin(20, 4);
lcd.setCursor(5,0);
lcd.print("DC Motor");
lcd.setCursor(5,1);
lcd.print("Direction");
lcd.setCursor(5,2);
lcd.print("Control");
lcd.setCursor(2,3);
lcd.print("via Arduino UNO");
delay(3000);
lcd.clear ();
lcd.setCursor(0,2);
lcd.print("www.TheEngineering");
lcd.setCursor(4,3);
lcd.print("Projects.com");
//Define L298N Dual H-Bridge Motor Controller Pins
pinMode(dir1PinA,OUTPUT);
pinMode(dir2PinA,OUTPUT);
pinMode(speedPinA,OUTPUT);
analogWrite(speedPinA, 255);//Sets speed variable via PWM
}
void loop() {
// Initialize the Serial interface:
if (Serial.available() > 0) {
int inByte = Serial.read();
int speed; // Local variable
switch (inByte) {
case 'C': // Clockwise rotation
//analogWrite(speedPinA, 255);//Sets speed variable via PWM
digitalWrite(dir1PinA, LOW);
digitalWrite(dir2PinA, HIGH);
Serial.println("Clockwise rotation"); // Prints out “Motor 1 Forward” on the serial monitor
Serial.println(" "); // Creates a blank line printed on the serial monitor
//lcd.clear();
lcd.setCursor(0,0);
lcd.print("Clockwise rotation");
break;
case 'S': // No rotation
//analogWrite(speedPinA, 0); // 0 PWM (Speed)
digitalWrite(dir1PinA, LOW);
digitalWrite(dir2PinA, LOW);
Serial.println("No rotation");
Serial.println(" ");
//lcd.clear();
lcd.setCursor(0,0);
lcd.print("No rotation");
break;
case 'H': //Accelrating motor
count=count+20;
if (count>255)
{
count =255;
}
analogWrite(speedPinA,count);
delay(50);
//digitalWrite(dir1PinA, LOW);
//digitalWrite(dir2PinA, HIGH);
Serial.println("Motor is accelrating slowly");
Serial.println(" ");
Serial.println(count);
lcd.setCursor(0,0);
lcd.print("Motor is accelrating");
break;
case 'L': //Deaccelrating motor
count=count-20;
if (count<20)
{
count=20;
}
analogWrite(speedPinA,count);
delay(50);
//digitalWrite(dir1PinA, LOW);
//digitalWrite(dir2PinA, HIGH);
Serial.println("Motor is deaccelrating slowly");
Serial.println(" ");
Serial.println(count);
lcd.setCursor(0,0);
lcd.print("Motor Deaccelrates");
break;
case 'A': // Anti-clockwise rotation
//analogWrite(speedPinA, 255); // Maximum PWM (speed)
digitalWrite(dir1PinA, HIGH);
digitalWrite(dir2PinA, LOW);
Serial.println("Anti-clockwise rotation");
Serial.println(" ");
//lcd.clear();
lcd.setCursor(0,0);
lcd.print("Anti-clockwise");
break;
default:
// Turn off the motor if any other key is being pressed
for (int thisPin = 2; thisPin < 11; thisPin++) {
digitalWrite(thisPin, LOW);
}
Serial.println("Wrong key is pressed");
//lcd.clear();
lcd.setCursor(0,0);
lcd.print("Wrong key is pressed");
}
}
}
- In the previous tutorials, DC Motor Direction Control using Arduino and DC Motor Direction Control using Matlab we have learnt that how to control the direction of the DC motor.
- We used the commands C, A and S for the clockwise rotation, anti clockwise rotation and stopping the motor respectively.
- In this tutorial, we have added two further commands H and L for accelerating and de-accelerating the DC motor.
- If we send the command H different times consecutively the speed of the motor will increase continuously.
- If we send the command L different times consecutively, the speed of the motor will start to decrease.
- Now, upload the source code to your Arduino UNO's board.
- Open the serial monitor at the top right of the Arduino Software.
- And enter the commands in serial monitor periodically as explained above.
Actual Hardware Setup
- When we enter the command C in the serial monitor of the Arduino software. Motor will start rotating in the clockwise direction and a statement Clockwise rotation will be printed on serial port.
- The same statement will be printed on the LCD as well as shown in the figure below.
- When we enter the command A in the serial monitor of the Arduino software. Motor will start rotating in the anti clockwise direction and a statement Anti clockwise rotation will be printed on serial port.
- The same statement will be printed on the LCD as well as shown in the figure below.
- When we enter the command H in the serial monitor of the Arduino software. Motor will start accelerating and a statement Motor is accelerating will be printed on serial port.
- The same statement will be printed on the LCD as well as shown in the figure below.
- When we enter the command L in the serial monitor of the Arduino software. Motor will start to deaccelerate and a statement Motor Deaccelerates will be printed on serial port.
- The same statement will be printed on the LCD as well as shown in the figure below.
Thats all from the tutorial
DC Motor Speed Control using Arduino UNO. I hope you have enjoyed this tutorial. If you face any sort of problem, you can ask me anytime without feeling any kind of hesitation. I will further explore my knowledge about
Arduino projects in my later tutorials. Till then, Take care :)
DC Motor Direction Control using Arduino
Hello friends! I hope you all will be absolutely fine and having fun. Today, I am going to share my knowledge with all of you about how to make a simple program for
DC Motor Direction Control using Arduino. The word DC
is basically an abbreviation of
Direct current. So, a direct current motor is commonly used motor having two input terminals, one is positive and the other one is negative. If we connect these terminals with the voltage supply the motor will rotate. If you change the polarity then motor will rotate in opposite direction. You should also have a look at
Difference between DC & AC Motors to get a better idea about these motors.
DC motor has a lot of applications. You can use it in automation projects, for controlling static as well as mobile robots, in transport system, in pumps,fans,bowers and for industrial use as well. In this tutorial, I will do the
DC Motor Direction Control using Arduino and L298 motor controller. Moreover, I have also used LCD which will give us the status of our DC Motor i.e. whether its moving in clockwise direction or anticlockwise. In my later tutorial I will control the same DC motor using NI LabVIEW 2015 and MATLAB. I have added the next tutorial on this project in which I have done the
DC Motor Direction Control in MATLAB so in that project, I have used the same hardware but instead of controlling it from Arduino I have controled it using MATLAB so you must have a look at that tutorial.
DC Motor Direction Control using Arduino
In this tutorial, I will make a simple program to do the DC Motor Direction Control using Arduino. Arduino is basically an amazing micro controller and is very easy to use because it is an open source device. So, it is a student friendly device. You can also write Arduino programs for different purpose. Arduino is also a cost efficient device in comparison to the other micro-controllers e.g. raspberyy pi, NI-myRIO, galileo, single board RIO etc. First of all I prepared my complete hardware setup. Then I made a program and interfaced it with the hardware. We will discuss all the steps in detail below. The logic is pretty simple i.e. Arduino has to send commands to L298 motor controller and then L298 decides the DC Motor Direction Control by manipulating the Arduino commands. Before going into the detail, I want to show you the list of components required. You can download complete Arduino source file here:
Download Arduino Source Code
Note:
If you are working on DC Motor then you should also have a look at these Proteus Simulations:
Components List & Description
Here's the complete list of the components required for designing DC Motor Direction Control using Arduino:
So, now let's discuss the main components for this project individually so that you get better idea of why these components are used in this DC Motor Direction Control using Arduino:
Arduino UNO
Arduino UNO is basically the back bone of this DC Motor Direction Control Project. It controls and leads the whole project. In this project, Arduino reads the commends from serial port and sends to
L298 motor controller IC in order to control the direction of rotation of the DC motor. So, the Arduino has overall major control over the whole project.
Motor Controller L298
Motor Controller is used to control the direction of DC motor. It consists of an L298 motor driver IC which is capable of rotating the motor in both clockwise and anti clockwise directions by switching its pins from
HIGH to
LOW and vise versa. Moreover, it needs +12V, GND and +5V in order to power it up. So, we will design a voltage regulator which will step down 12V to 5V. So, let's have a look at this voltage driver in next part:
Voltage Regulator
Voltage regulator is also the part of this design. In our daily life, we need to step up or to step down the voltages according to the requirements. Requirements vary with the different purpose. Small electronics components like micro-controller, LED, LCD etc. So the main purpose of voltage regulator is to step down the voltage from 12V to just 5V in order to fulfill the requirements of the electronic components. Step down transformer can also be used instead of voltage regulator. Due to the huge structure and cost we prefer to use voltage regulator.
You should read How to
Design a 5V Power Supply in Proteus to get better idea about this voltage regulator. The circuit diagram of the designed voltage regulator is shown in the figure below.
DC Motor
DC motor is the essential part of the different projects and our daily life. for example if we want to automate our house doors i.e if we want to open and close the doors automatically by detecting the person, motor plays a vital role here. Similarly in robotics, vacuum, blowers and air conditioners, DC motor has a wide range of applications.
LED is used here to show whether the designed circuit is working properly or not. Like in mobile phones and laptops as we connect the charger it shows the charging indication. So, we must need some indication that everything is going fine and the circuit is working properly.
Jumper Wires
Jumper wires are used to make the connections between all of the components. Use small pieces of the jumper wires in order to give a better look to the designed circuit. If you are using longer wires for the connections, it will create complexity and causes many problems while operating the circuits.
Power Supply
12V power supply is used as the main power supply. As we know, to operate any of the electronic components or electronic appliances we must need the main power supply. Power supply can vary according to the power consumption of the electronic equipment. Here I am using a 12V DC power supply because it is a small and simple project with minimum power requirements.
LCD 20x4
LCD is used to visualize the commands sent to the serial port. It basially display us that which function is being performed at a particular time. A 20×4 LCD is used and is shown in the figure below. If you haven't worked on LCD before, then you should have a look at
Circuit Designing of LCD with Arduino in Proteus ISIS.
Assembling of the Components
Here are the few steps followed while designing this DC Motor Direction Control using arduino:
- Connect the terminals of the DC motor with the output pins (OUT1 and OUT2) of L298 motor controller.
- Connect L298 motor controller's pin IN1 and IN2 with the Arduino UNO's pin 2 and 5 respectively.
- Now, connect ENA pin of L298 motor controller to the Arduino's pin 9.
- Connect the power supply to turn on the circuit.
- Make sure that you have supplied 12V, 5V and GND properly to the L298 motor controller.
Circuit Diagram
Completely Assembled Diagram
Arduino Code Designing
After making all the connections properly, open your Arduino source code. If you are using Arduino for the first time then you should have a look at
Installation of Arduino Driver in Windows.
- Attach the Arduino board with your PC and go to Search->Device Manager as shown in the figure below.
- Select the device manger and you can see different options here like Batteries, bluetooth radios, keyboards, monitors, ports etc.
- Open the Ports(COM & LPT) as shown in the figure below.
- See the COM Port supported by Arduino Board which COM5 in this case.
- Now open the Arduino software and go to Tools and select the Arduino board and the COM port properly.
- The description is shown in the figure given below.
- Just copy and paste the source code given below.
#include <LiquidCrystal.h>
//Keyboard Controls:
//
// C - Clockwise
// S - Stop
// A - Anti-clockwise
// Declare L298N Controller pins
// Motor 1
int dir1PinA = 2;
int dir2PinA = 5;
int speedPinA = 7; // PWM control
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
void setup() {
Serial.begin(9600); // baud rate
lcd.begin(20, 4);
lcd.setCursor(5,0);
lcd.print("DC Motor");
lcd.setCursor(5,1);
lcd.print("Direction");
lcd.setCursor(5,2);
lcd.print("Control");
lcd.setCursor(2,3);
lcd.print("via Arduino UNO");
//Define L298N Dual H-Bridge Motor Controller Pins
pinMode(dir1PinA,OUTPUT);
pinMode(dir2PinA,OUTPUT);
pinMode(speedPinA,OUTPUT);
}
void loop() {
// Initialize the Serial interface:
if (Serial.available() > 0) {
int inByte = Serial.read();
int speed; // Local variable
switch (inByte) {
case 'C': // Clockwise rotation
analogWrite(speedPinA, 255);//Sets speed variable via PWM
digitalWrite(dir1PinA, LOW);
digitalWrite(dir2PinA, HIGH);
Serial.println("Clockwise rotation"); // Prints out “Motor 1 Forward” on the serial monitor
Serial.println(" "); // Creates a blank line printed on the serial monitor
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Clockwise rotation");
break;
case 'S': // No rotation
analogWrite(speedPinA, 0); // 0 PWM (Speed)
digitalWrite(dir1PinA, LOW);
digitalWrite(dir2PinA, LOW);
Serial.println("No rotation");
Serial.println(" ");
//lcd.clear();
lcd.setCursor(5,1);
lcd.print("No rotation");
break;
case 'A': // Anti-clockwise rotation
analogWrite(speedPinA, 255); // Maximum PWM (speed)
digitalWrite(dir1PinA, HIGH);
digitalWrite(dir2PinA, LOW);
Serial.println("Anti-clockwise rotation");
Serial.println(" ");
//lcd.clear();
lcd.setCursor(3,2);
lcd.print("Anti-clockwise");
break;
default:
// Turn off the motor if any other key is being pressed
for (int thisPin = 2; thisPin < 11; thisPin++) {
digitalWrite(thisPin, LOW);
}
Serial.println("Wrong key is pressed");
//lcd.clear();
lcd.setCursor(0,3);
lcd.print("Wrong key is pressed");
}
}
}
- Now, upload the source code onto the Arduino UNO board as shown below.
- In the above figure shows that the source code is uploading to the Arduino board.
- Done uploading shows that the source code has been uploaded successfully to the Arduino borad.
- Now, go to the Serial Monitor on the top right corner of the Arduino software.
- Press C, you can see the DC motor is rotating in the clockwise direction and statement Clockwise rotation will be printed on the Serial Monitor.
- Now, press S, the DC motor will stop and a statement No rotation will be print on the Serial Monitor.
- If you want to rotate DC motor in anti-clockwise direction, press A then, the statement Anti-Clockwise rotation will be printed on the Serial Monitor.
- I have made the logic in such a way that if you press any of the other buttons the DC motor will stop in reaction to that and the statement Wrong key is pressed will be printed on the Serial Monitor.
- All of the above steps are shown in the figure shown below.
Final Testing of DC Motor Direction Control using Arduino
- The screenshot of the actual circuitry for DC Motor Direction Control using Arduino is shown in the below figure:
- You can see in the above figure that we have attached Arduino UNO board with L298 Motor Driver and then we have attached DC Motor with Arduino UNO and LCD is used to show the current movement of Motor.
- Moreover we have also designed a small circuit which I have mentioned above and named as Voltage regulator, and it is used to step down 12V into 5V.
So, that's all from the tutorial
DC motor Direction Control using Arduino. I hope you enjoyed this tutorial. In my next tutorials, I will interface this project with LabView and MATLAB. If you face any sort of problem, you can freely ask me
anytime without feeling any kind of hesitation. So, will see you guys in next tutorial. Till then Take care :)
Interfacing of Arduino with GLCD
Hello friends, I hope you all are doing great and having fun with your lives. In today's tutorial, I am going to share How to interface Arduino with GLCD. I am gonna design a Proteus Simulation in which I will interface Arduino GLCD together. GLCD is also called Graphical LCD so today we are gonna do some designing on the LCD. The GLCD I am going to use is ks0108 and its model in Proteus is LGM12641BS1R and I have shared the complete Simulation along with Arduino Code below for download. But I would suggest you to design it on your own so that you could get the most out of it. If you haven't worked on the LCD before then I would suggest you to read
How to Interface Simple LCD with Arduino.
Moreover, I am quite happy to announce that we have started
TEP Forum so if you guys have any questions related to your engineering projects then ask in our forum and we will try our best to resolve your issues. Anyways, let's get back to our today's tutorial and interface Arduino GLCD in Proteus ISIS.
Interfacing of Arduino with GLCD
- First of all, you can download the Proteus Simulation and Arduino Code for Interfacing of Arduino with GLCD, by clicking the below button:
Download Code & Simulation
- Now let's design it so that you can understand how this is working.
- So, first of all design a Proteus Simulation for Interfacing of Arduino with GLCD, as shown in below figure:
Note:
Proteus doesn't have Arduino in its database so you need to install this
Arduino Library for Proteus if you wanna use Arduino in Proteus.
- Now upload the below Arduino code in your Arduino Software and Get your Arduino Hex File, which we are gonna upload in our Proteus Arduino.
- Here's the Arduino Code for Interfacing of Arduino with GLCD:
Note:
- You also have to install the GLCD Library for Arduino, I have added this library in the above package so when you download it first of all install this library in Arduino Software.
#include <glcd.h>
#include "fonts/allFonts.h"
#include "bitmaps/allBitmaps.h"
Image_t icon;
gText textArea;
gText textAreaArray[3];
gText countdownArea = gText(GLCD.CenterX, GLCD.CenterY, 1, 1, Arial_14);
unsigned long startMillis;
unsigned int loops = 0;
unsigned int iter = 0;
int theDelay = 20;
void setup()
{
GLCD.Init();
if(GLCD.Height >= 64)
icon = ArduinoIcon64x64;
else
icon = ArduinoIcon64x32;
GLCD.ClearScreen();
GLCD.SelectFont(System5x7, BLACK);
GLCD.CursorTo(2, 2);
GLCD.print("The Engineering");
GLCD.CursorTo(5, 3);
GLCD.print("Projects");
}
void loop()
{
}
- So, now if everything goes fine then when you run your Proteus Simulation of Arduino with GLCD, you will get results as shown in below figure:
- So, what we have done is we just printed our blog name on the GLCD using Arduino.
- Now, in the package you download I have also added another example which when you upload will give you a demo of GLCD.
- Here's the results of the second example, I have added some screenshots:
- So, that's how you can interface Arduino with GLCD and can design anything you want.
- It's really very easy but quite lengthy, I must tell.
- I have designed this video which will help you in better understanding:
So, that's all about Interfacing of Arduino with GLCD and I hope I have helped you guys in some ways. So, will meet you guys in the next tutorial. Till then take care and have fun !!! :)
How to use Arduino PWM Pins
Hello friends, I hope you all are doing great. In today's tutorial, I am going to show you
How to use Arduino PWM Pins. It's the next tutorial in our new
Arduino Tutorial for Beginners series. We will design a small code in which we will be controlling a dc motor's speed using the Arduino PWM Pins but before going into the details, let me first give you an introduction to Arduino PWM Pins because without understanding the PWM, which is the abbreviation of
Pulse Width Modulation, you won't be able to understand How to use Arduino PWM Pins. In our previous tutorial, we have seen
How to use analogWrite in Arduino and I have told you in that tutorial that we use this command for PWM as well. So, today we will have a look at How to do that.
PWM is an abbreviation of Pulse Width Modulation, its a simple technique in which we just modulate the width of a pulse to get our required results. Suppose, we have a 12V DC signal but my requirement is to get the 6V instetad of 12V so here what I need is PWM. I will use PWM on 12V signal and then reduce it to 6V. Another important thing related to PWM is duty cycle. Duty Cycle is the percentage for which the pulse remains HIGH. For example, if the pulse is of 12V and you turn it into 6V using PWM then the duty cycle of PWM is 50%. I have posted many tutorials on PWM for example you should have a look at
How to Generate PWM in 8051 Microcontroller. In this tutorial, I have explained in detail about PWM signal. Moreover, you can also have a look at
DC Motor Speed Control using Arduino in which I have controlled the speed of DC Motor with LDR Sensor. Anyways, let's get back to How to use Arduino PWM Pins:
How to use Arduino PWM Pins ???
- You can download the complete simulation along with its Arduino code for Arduino PWM by clicking the below button:
Download Simulation & Cod
- First of alll, we should know which pins of Arduino can be used for PWM purposes.
- So, if you have a look at the below figure, its an Arduino UNO and all the pins of Arduino UNO which has this sign "~" in front of them are PWM pins.
- If you have a look at the above Arduino UNO image then you can see that "~" this sign is placed in front of six pins.
- So, Arduino UNO PWM Pins are:
- Pin # 3
- Pin # 5
- Pin # 6
- Pin # 9
- Pin # 10
- Pin # 11
- Using these PWM Pins, you can create the PWM pulse which we are gonna do rite now. :)
- So, design a simulation in Proteus as shown in the below figure:
- As you can see in the above figure that I have used LDR Sensor with Arduino UNO and I have plotted the PWM output coming from Arduino UNO on the oscilloscope.
- For PWM output the command used in Arduino is:
analogWrite(PWM_Pin, PWM_Value);
- As, you can see its just an analog Write command and using it you can write any value to the PWM Pin ranging from 0 to 255.
- At 0 the duty cycle of PWM will be 0% and at 255 it will be 100%.
- So, what I did in the above example is I just take the analog value coming from LDR and then transferred it to PWM Pin of Arduino UNO.
- So, now upload the below code in your Arduino board:
int PWMControl= 6;
int PWM_Input = A0;
int PWM_Value = 0;
void setup() {
pinMode(PWMControl, OUTPUT);
pinMode(PWM_Input, INPUT);
Serial.begin(9600);
}
void loop()
{
PWM_Value = analogRead(PWM_Input);
PWM_Value = map(PWM_Value, 0, 1023, 0, 255);
analogWrite(PWMControl, PWM_Value);
}
- So, now Get your Arduino Hex File and upload it in your Proteus software.
- You will also need to download Arduino Library for Proteus, if you wanna use this Arduino UNO in Proteus.
- Now, if everything goes fine then you will get results as shown in below figure:
- Now you can see in the above figure that I have shown the PWM pulse in the oscilloscope and now when you change the LDR value then this pulse's PWM will also change.
- You can download the complete simulation with Arduino code by clicking the button above.
- If you have any problems or issues in this Arduino PWM tutorial then let me know in comments.
I hope you have enjoyed today's post on Arduino PWM Pins and I would suggest you to have a look at
DC Motor Speed Control using Arduino, it will help you a lot in understanding the basic concept of Arduino PWM. So, that's all about Arduino PWM, will see you guys in the next tutorial. Till then take care and have fun !!! :)