Car Parking System with Automatic Billing using Arduino
Hi Geeks, welcome to our new project. Our new project is one of the most common issues you’ve seen in your cities. In this project, we are going to make a car parking system with automatic billing. In the entire world, there are an estimated 1.4 billion cars on the road, which is absolutely great news if we are considering the development of the Automobile industry. But the most serious issue is that the number of cars exceeds the number of available parking places, resulting in traffic congestion. Damaged cars due to this lack of space, fewer parking locations, lack of parking signage, informal parking, and overcharging for parking are just a few of the issues.
People are still choosing manual parking methods, which have a number of drawbacks, such as searching for a vacant spot in a parking lot without knowing if the lot is full or not, resulting in time and fuel waste. Vehicle safety is also a concern that may be addressed. We've all been in a position when we've spent a long time looking for parking at a location just to discover that none is available. You would think that if you knew the slots were full, you would've ended up finding another parking spot.
Based on these scenarios, we came up with the idea of a Car Parking System with Automatic Billing which will also reduce manpower such as security, booth attendants, etc., required in parking lots. Everything in the modern day is automated, and with this project, we can automate this procedure using simple electronics components and Arduino. Let's get started.
Software to install:
Instead of using real components, we'll use the Proteus Simulation tool to design this project. It's also a good habit to experiment with simulations before attempting to build everything with real components. By simulating an issue that may develop when working on actual components, we may identify the problem and avoid any damage to our components.
Proteus is an interesting software that lets you model and build electronics circuits. Despite having a huge library of electronics components, Proteus software lacks pre-installed modules such as Arduino boards, Ultrasonic sensors, RTC modules, LCD modules, and so on.
Now, we’ll start installing the libraries, which is needed for our project:
By clicking the button below, you can download the entire project, including Proteus Simulation and Arduino Code.
Project Overview:
These are required components for Accident Detection, which are as follows:
- Arduino Uno: Arduino Uno is a development board from the Arduino family, which is the main component of this project and acts as the brain. The Microcontroller i.e., Arduino is responsible for the decisions that are going to be processed in the project.
- 20X4 LCD display: It is used to display the information regarding parking slots and shows the amount that has to be paid by the driver at the Check out time from the parking lot.
- Ultrasonic Sensor: It is used to calculate the distance from the car to the entry gate and detects that a car has reached near the gate.
- RTC Module: Real-Time Clock Module is used to calculate the time and plays a key role in determining the total amount for the parking slot.
Components Needed:
- Arduino Uno
- LCD Module
- Ultrasonic Sensor
- Keypad 3x4
- LED’s
- RTC Module
Components Details
Arduino Uno:
- Any Arduino development board can be used in this project, however, we'll be using Arduino UNO development boards. The Arduino UNO is a programmable, open-source microcontroller board from the Arduino series.
- It contains an ATMega328P microcontroller from Atmel, which has an 8-bit RISC processing core and 32 KB of flash memory.
- The Arduino UNO includes 14 digital I/O pins i.e., D0 - D13, with a resolution of 10 bits, including 6 PWM pins and 6 analog I/O pins (0-1024) i.e., A0 - A5.
- Only one hardware UART peripheral pin, one I2C peripheral pin, and one SPI peripheral pin are available on the Arduino UNO (however we can use other pins for UART communication using the SoftwareSerial package in Arduino).
- The Arduino UNO can be powered from a voltage range of 7 to 12 volts, the voltage regulator embedded inside the board will reduce the excess voltage. however, not more than 9 volts is suggested since it might harm the Arduino board.
- A USB-B cable (the same cable that we used to upload the sketch to Arduino UNO), a DC power jack, and the Vin pin on the board may all be used to power Arduino UNO.
- Using the Arduino IDE Software, the sketch is written and uploaded to the Arduino UNO. It is completely free, simple to comprehend, and easy to combine with a variety of electronic components.
LCD Module:
In this project, an LCD display is used to present the information to the user.
- LCD stands for Liquid Crystal Display, and it is a type of display that is made using Liquid Crystal technology.
- LCDs come in a variety of sizes; in this project, we utilized a 20X4 size.
- The 20X4 indicates that it can show 80 ASCII characters at once.
- The LCD has 16 pins. In which the necessary pins are connected in the circuit.
- It contains eight data pins, one Read/Write select pin, one Register mode pin, one Enable pin, two backlight pins, two power supply pins, and one contrast control pin.
- In the LCD, there are primarily two types of registers: Command Register and Data Register.
- When the RS(Register Select) pin is set to logic high, the data register mode is selected, and when it is set to logic low, the command register mode is selected.
The RS pin will be set to logic high to display the data on the LCD.
Ultrasonic Sensor (HR-SR04):
- The HC-SR04 ultrasonic sensor employs SONAR to estimate the distance of an object.
- The ultrasonic sensor sends out a signal wave that has a frequency of about 40 kHz, with a high pitch that humans are unable to hear.
- From 2 cm to 400 cm (1" to 13 feet), it provides the detection of objects with high accuracy and the pulse will not be disturbed by sunlight or any climate conditions.
- It consists of four pins, Trig, Echo, VCC, and GND.
- The operating voltage of an Ultrasonic sensor is 5V. We can connect the VCC pin of the sensor with 5V output in Arduino and the sensor will work perfectly.
- Ultrasonic sensors work on the principle of sound wave reflection.
- The trig pin works as an ultrasound transmitter which emits the high frequency sound waves in pulses. And the echo pin works as an ultrasound receiver. It receives the reflected ultrasonic waves which are bounced back from the object.
- We calculate the distance from the object and the sensor by measuring the time taken between the transmission and the reception of the signal.
- To measure the distance of sound traveled from trig to echo,
Distance = (Time x SpeedOfSound) / 2.
Speed of Sound: 340 meters per second i.e., 0.034
- The easiest way to calculate the distance in cm is using this formula,
Distance in Centimeters = (( Time taken by pulse signal (in microseconds) / 2) / 29)
Keypad 3x4:
- A keypad button is used for user input.
- The keypad's buttons are arranged as a matrix of 3x4. Which means it has four rows and three columns.
- They work on the principle of membrane keypads. They are very flexible and feel like a push button.
- The switch between a column and a row trace is closed when a button is pressed, allowing current to pass between a column pin and a row pin.
- A copper padding and line beneath the pad connects each switch in a row to the other switches in the row.
RTC Module (DS1307):
- The DS1307 IC is a low-cost, high-accuracy RTC that uses the I2C protocol as an interface.
- The DS1307 features a backup battery mounted on the rear of the module to maintain track of time even if the main power supply is disconnected.
- When necessary, the chip shifts between the primary and backup power sources.
- The RTC records information such as seconds, minutes, hours, days, dates, months, and years.
- This module includes a Reference clock, programmable Square wave output(SQW), SCL, SDA, VCC, and GND.
- Automatic Power-Fail Detect and Switch Circuitry
- Low Power Operation Extends Battery-Backup Run Time.
- The RTC module works on operating voltage 5V.
Proteus Simulation of Car Parking System:
Now, it’s time to start the design of the Proteus Simulation of our Car parking system
- Before you begin designing, make sure Proteus is installed on your computer and that you have downloaded all of the necessary libraries.
- We'll need Arduino libraries and LCD modules for this project. Make sure you've read the section on using libraries in Proteus software.
- Let's begin by creating a new project, and importing all of the required components, and placing them within the working area.
- Select all of the components from the Proteus component library that we'll require.
Circuit Diagram and Working:
After importing all required components to the workplace, let’s move to connecting them.
- Starting with the connection of LEDs, we are using digital pins 2,3,4,5,6 for LEDs. Connect the positive side of the LEDs to the Arduino UNO board.
- After that, connect the Ultrasonic sensor module’s Trig pin and Echo pin to digital pin 8 and 7 respectively, Vcc to 5v volt power and GND to Ground.
- In the simulation. it will not be possible to change the distance from the Ultrasonic sensor so for that we have connected a potentiometer with the test pin of the module.
- Now start the connection of the Keypad, as this is a 3x4 keypad so it will use 3 pins for columns and 4 pins for rows.
- As there are limited digital pins on Arduino UNO, we have to use the analog pins of Arduino UNO as digital pins.
- Now let’s connect the row pins A, B, C, D with A0, A1, A2, A3 respectively and column pins 1, 2, 3 with digital pins 9, 10, 11 respectively. And we have to connect the pins in an exact manner.
- RTC module uses the I2C protocol, so we will connect SDA and SCL pins to Arduino UNO’s SDA (A4) and SCL (A5) pins respectively. Vcc with 5v power supply and Gnd with the ground.
- As there are no pins left for connecting the LCD module therefore we will use an I2C GPIO expander for connecting the LCD module.
- Connect the SDA and SCL pins of GPIO expander with the SDA and SCL pins of Arduino UNO and we have to set the slave address of GPIO expander, for that we will connect the A0, A1, A2 pins with ground, that will set the I2C slave address to 0x20.
Now we have done the circuit, it’s time to move to the coding side of this project.
Arduino code for the accident detection:
- We must add relevant libraries, which operate as header files in programming languages before we begin writing the code.
- So, if the necessary libraries aren't already installed in the Arduino IDE, we'll need to download them first.
- We can install Arduino libraries by going to 'Sketch > Include Library > Manage Library' in the Arduino IDE. In the library manager, we can now search for our essential libraries. The libraries can also be installed via zip files.
- We can download the libraries from the above instruction, but if they are not available, we can use the following links to download the zip files of libraries.
- Here we used “Wire.h” to enable I2C communication and it is pre-installed.
- “LiquidCrystal_I2C.h” is used for the LCD.
- “Keypad.h” is used for the integration of the keypad module.
- “RTClib.h” is the library for RTC modules.
- Let’s declare the pins for modules. We mainly use two pins i.e. Trig and Echo for the object detection and distance calculation. Here we have connected the Echo pin to D7 and Trig pin to D8 in Arduino Uno and an array for storing the pins for LEDs as D2, D3, D4, D5, D6. Two arrays for storing the pins for keypads such as rowPins for A0, A1, A2, A3 pins and colPins for D9, D10, D11.
- Now, Let’s declare configuration related variables for the keypad. Here we are declaring variables to store the number for Rows and Columns. We will use a 2D char array named ‘hexaKeys’ for storing the symbols of keypad.
- Now declare some general variables for storing the values for ultrasonic sensors, charge, total charged amount, check-in time and check-out time of vehicles.
- Now, Let’s declare the objects of the modules.
- The “customkeypad” is initializing an instance of class NewKeypad. The statement is going to map these symbols with the pins we have declared to connect with Arduino. Hence, it will map according to the row and column pins.
- Next, we are initializing the LCD display with an I2C serial interface and setting the address to 0x20 Hex.
- And we are declaring an object named ‘rtc’ for the “RTC_DS1307” module.
Void Setup():
- The void setup() is an important function in the sketch that will execute only once in the whole program. The input, output, and other serial communication initializations are done inside the void setup. Let’s write the void setup sketch now.
- In this setup function, firstly we have enabled the serial communication with “Serial.begin” with the default baud rate of 9600.
- Next, we are initializing the LCD and turning on the backlight of the LCD.
- We have already declared the Trig and Echo pins before in the declaration part, and now we are going to set them up as output and input pins respectively.
- There may be a doubt why we have declared a Trig as output and Echo as input. That is because the Trig pin will generate the ultrasonic wave pulses and the Echo pin will work as a receiver for reflected waves.
- We are using five led’s for the five slots in the parking lot and to make the logic simpler, declare the led pins as output mode.
- Now, we are printing a line in the serial monitor and LCD. We are using the cursor function and printing “Made by” in the first row and “Tushar Gupta” in the second row. (0,0) is representing (column, row) in the LCD.
- After printing the line, clear the LCD screen.
- Now, we are trying to initialize the RTC module and if the RTC is not found, it will print that “Couldn’t find RTC”. and halt the further processing of code.
- After successful initialization of the RTC module we will know if the RTC module is running already , if yes then we don’t have to set the time explicitly otherwise we have to .
- We will use a “dist()” function to calculate the distance using the formula mentioned in component details.
- For the calculation of distance, we will generate the pulses using the Trig pin.
- To generate the pulses , switch the TRIGpin to LOW for 4 microseconds and then HIGH for 10 microseconds then again LOW .
- By using ‘pulseIn’ we can calculate the time duration the wave has taken to travel back from the object.
- “ distance = duration*(0.034/2); ” and here 0.034 is the speed of sound and with this formula, we can calculate the distance in cm and set the threshold values.
- “pulseIn” takes two arguments, first pin number and second logical state. This will read the pin for logic HIGH and return the time period in which that pin was at a HIGH state.
- For more knowledge of “pulseIN “ refer to this link: pulseIN function
Void loop():
- It is the next most important function of Arduino code/ sketch. The “void loop()” will run after the execution of “void setup()”.
- We'll write the code required to run in a continuous loop in this part. So here we'll write our main application code.
- Here, we are going to first discuss the Automatic billing part near the gate in our parking system.
- In the loop function, the Date and Time of that current time are set by “rtc.now”, and the user will enter his slot number in the keypad when he/she is exiting from the slot.
- The user will click the allocated slot number on the keypad and we are collecting that in the “customkey” variable using the “getkey” function.
- The serial monitor will print the custom key entered by the user. Then we will check the slot status by “digitalRead (led[i])”.
- If the led status is HIGH which means the slot was occupied now we will generate the bill for that slot and display that amount on the LCD display for1 second after clear the LCD and set that slot LED to LOW state.
- The next step we are going to do is to calculate the total amount according to his vehicle staying inside the parking lot. And for that, we can do the simple calculation that is “amount = charge*(gotime [i] - cometime [i]) ;”.
- We have already declared the charge amount in the above sections of the program. The charge will be multiplied by “go time - come time”, which is the total time the vehicle stayed inside the lot. And the multiplied result of stay time and charge is the final amount the driver has to pay for his parking slot.
- Now, the driver can pay the amount and exit through the gate. Here, after a second delay, we are clearing the LCD display.
- “What if the driver pressed any wrong key which has a free slot?” That might be the question in your mind. Well, we can cover that condition with an else statement, where we can print “The slot is already empty” on the LCD and let the driver know that he has entered the wrong key in the keypad near the exit gate.
- Till now, we have seen the Automatic billing logic near the exit gate. But let’s see what is the slot allocation process at the entry gate.
- As we have already calculated the distance with the ultrasonic sensor using the “dist()” function, we can set the distance limit to 100cm before the gate, and when a car reaches the entry gate the allocation of the slot will be started.
- The “for loop” here will see what are the slots showing Low/empty in the parking and allocate that empty one to the car by printing “Park your car at ” and “Slot i” in the LCD.
- As this slot was allocated, we have to write this LED as High which indicates the slot is not empty. This is the reason where the slot led is high at the exit gate when the user pressed his slot number in the keypad. We are turning on the LED when we are allocating the slot to a car.
- Now we also have to collect the “come time” by the RTC module for further calculation at the end or near the exit gate.
- We are implementing an if statement where the all LEDs are high, which means all the slots are filled, the LCD should print (“No more slots”) and inform the driver and clear the LCD screen.
Results / Working:
We have completed the Proteus simulation circuit and Arduino code for the Car Parking project. And it is ready for testing.
- Before going to start the simulation, we have to add the hex file of our application code in the Arduino UNO module in Proteus and a hex code for the ultrasonic sensor also.
- To add the hex file, click on the Arduino UNO and a new window will open then click on the Program files, there we will browse to our hex file.
- In the same way, we can add a hex file for the ultrasonic sensor.
- Now start the simulation, on the first boot of the circuit, LCD will display the welcome message and the same message will be displayed in the serial terminal also
- Just for debugging purposes, we are continuously printing the ultrasonic sensor values.
- In the simulation to change the distance between the vehicle and ultrasonic sensor we have used a potentiometer. Now change the value on the potentiometer.
As we can see that for 50% value on the pot ultrasonic sensor value is near to 500 cm and for 77% value on the pot ultrasonic sensor value is near to 850 cm.
- Let's test the condition when the vehicle approaches the sensor, to satisfy that condition the object must be at a distance of less than 100 cm. For that, we have to change the pot value. Set the pot value near to 10 %.
- After that LCD will display a message if that spot is vacant like “Park your car at Slot 1” and LED for the same location will glow.
- To take the bill for any location press the keypad for that location number let’s suppose here the location is 1 so we will click on ‘1’
- After that, it will generate the bill with the total charged amount and the LED for that location will be turned off.
- In case if we click any slot button which is already vacant then LCD will display the message for the slot is vacant.
Here it is not visible which button on the keypad has clicked but suppose we have clicked ‘1’ and if that location is vacant then it will display that message.
- Let’s take another case when we want to park another car. Now slot 1 is already busy so we will park at slot 2.
- This time when the sensor value changes less than 100 cm, then the LCD display will show “Park your car at slot 2” because slot 1 is preoccupied.
- In the image, we can see that both LEDs are glowing as both slots are occupied now.
- For billing, we will click the button on the keypad for the respective slot.
- Let’s take a case when all slots are occupied. Here we can see all slot LEDs are glowing.
- Now we will try to park another car. Then LCD will display ‘no more slot’ as there is no vacant slot available at parking.
I hope you have a good understanding of how our Car parking system project works and that you have liked it. Although it’s a tough nut to crack in the first read, I strongly recommend you to read the logic part twice for better understanding. I believe we have covered almost everything, please let us know if you have any questions or suggestions in the comments section.
Thank you very much for reading this project. All the best for your projects!
Home Security System using Arduino UNO in Proteus
Hello friends, I hope you all are doing well. In today's tutorial, we are going to design a Home Security System using Arduino UNO in Proteus software. It's the most commonly designed engineering project, especially in electrical, electronics and mechatronics engineering. Normally engineering students design it as a semester project during their engineering course.
So, today we will design a home security system from scratch in Proteus software. I have given the complete project below to download but I would suggest you to design it on your own so that you could understand it better. So, let's get started:
Home Security System: Project Description
- Before going into the detail, let's first download the complete Proteus Simulation with Arduino Code, by clicking the below button:
Home Security System using Arduino UNO in Proteus
Let me first give you a detailed project description i.e. what we actually want to design? We want to build a Home Security Project, which should follow these security protocols:
- Fire alarm: It should be able to detect the fire and sound an alarm to alert everyone at home.
- Smoke alarm: It should detect the gas(smoke) and turn on the alarm(if detected).
The above-mentioned security protocols will be followed 24/7. Moreover, there will be two security modes in the project, named:
- Secure Mode.
- Normal Mode.
Let's have a look at both of these modes, one by one:
1. Secure Mode
- This mode should be selected, when owners want to completely secure their home i.e. they are leaving home or while sleeping at night.
- If the Secure Mode is selected, the project should follow the following security protocols:
- Intruder Detection Alarm: It should detect the presence of any human being in the occupied premises.
- Windows Security Alarm: If someone tries to break through the windows, the project should sound an alarm.
- Door Security Alarm: If any intruder tries to break through the main door, it should again sound the alarm to alert everyone.
2. Normal Mode
- This mode should be selected, when owners are at home and just want to take the basic security measures.
- In this mode, only the Fire Alarm & Gas Alarm will work, while all other alarms will remain on standby.
Other Features
- There should be an LCD, to display values of all parameters.
- It should have a buzzer to generate an alarm, in case of emergency.
- There should a Push Button to make switches between these security modes.
Here's the final simulation, which we are going to design in today's lecture:
So, these are our requirements, which we want to achieve in this Home Security Project. Now let's have a look at the components selected for this project:
Home Security System: Components Selected
Now let's have a look at the list of components, which I have selected for this Home Security Project. I will also briefly explain the purpose of using each component.
1. Arduino UNO
- As clearly it's an Embedded Systems Project, so first of all we need to select a Microcontroller for our project.
- As I have mentioned earlier, we will use the Arduino UNO Microcontroller board for designing this project.
- Arduino UNO will act as the brain of the project and will control all sensors and modules.
2. Flame Sensor:
- A flame sensor is used to detects the presence of fire.
- The sensor basically consists of a photo-diode that detects the Infrared rays that emit from the fire. When it detects a fire, its output goes HIGH.
3. Gas Sensor (MQ-6)
- MQ-6 Gas Sensor is used to detect the concentration of gases in the environment.
- The sensor produces a potential difference proportional to the concentration of the particular gases.
- The type of gas that it detects depends upon the material used in the sensor.
- There are many gas sensors available in the market i.e. MQ-2, MQ-3, MQ-4 etc.
- These sensors are available as ready-made modules for easy interfacing with the microcontroller.
4. PIR Sensor(HC-SR501)
- HC-SR501 PIR sensor is used to detect any human being(intruder) in the Secure Mode.
- It detects the IR radiations from the human movement & generates a pulse on its output.
- The time period of the pulse could be varied by using the potentiometer on the sensor.
5. Vibration sensor(SW-420)
- The SW-420 vibration sensor is used to detect any forced entry through windows.
- In Secure Mode, if someone tries to open the window, the sensor will detect vibrations and will send a HIGH signal to the microcontroller.
6. Infrared Sensor
- An infrared sensor will be placed at the door and someone tried to enter through that door, the sensor will detect it.
- It consists of an IR transmitter and a photo-diode that are placed close to each other.
- If any object movement occurs in front of the sensor, the IR rays hit the object and return back with a particular angle called incident angle.
- This pulls the comparator output to ground or logic LOW.
7. LCD 20x4
- LCD 20x4 will be used for displaying the values of all these sensors.
- It will also display useful information i.e. which mode is selected.
8. Buzzer
- A small 5V Buzzer is used to sound the alarm.
9. LM7805
- LM7805 is a voltage regulator and is used to convert voltage from 12V to 5V.
- Power sources(i.e. battery, adapter etc.) available are normally 12V, as it has become a standard.
- Moreover, many components also operate at 12V like a buzzer or DC motor.
- While microcontrollers and sensors work on 5V, so in Embedded projects, it's quite necessary to design a voltage regulator from 12V to 5V and in some cases 3.3V.
- I normally prefer LM7805 for converting voltage from 12V to 5V.
10. Resistances(1kohm)
- We need to use a few resistances of 1kohm.
11. Small LED
- We will also use a small LED for power indication.
12. Capacitors(100uF)
- We will also use few capacitors of 100uF, as it removes any noise/ripples.
So, these are the components, we are going to use for designing Home Security System. Now let's get started with designing the Proteus Simulation:
Proteus Simulation of Home Security System
As I have told you earlier, I am going to use Proteus software for designing this project. Proteus is an excellent simulation tool, where we will not only design the circuit of this project but will also test its output. I always design my programming algorithms on simulations as working on real hardware is too time-consuming. You should remove all your programming bugs in simulation and once confirmed then design your project in real hardware. So, let's start:
Install Proteus Libraries
- Arduino boards & sensors' modules are not available in the Proteus components list.
- So, first of all, we need to install these Proteus libraries:
- Adding these libraries is quite simple, you just need to place their files in the library folder of Proteus software.
- If you got any issues, then read this guide on How to add a Library in Proteus 8.
Once you added all the libraries, now open your Proteus software.
Designing Circuit Diagram in Proteus
- Now we need to design a circuit for our project, so select these components from Proteus Components Search Box.
- First of all, let's design the voltage regulator circuit using LM7805, which will be simply converting the voltage from 12V to 5V.
- As you can see in the above figure, I have used 12V Battery, while the output of LM7805 is showing 5V and I have also placed an LED for power indication.
LCD Interfacing with Arduino:
- Next, we need to interface 20x4 LCD with Arduino UNO, so design the circuit as shown in the below figure:
Next, we need to interface five sensors with Arduino UNO, so let's add them to our Proteus simulation:
Sensors Interfacing with Arduino:
- These are simple digital & analog sensors and are all powered up at 5V.
- So, simply connect them as shown in the below figure:
- The Flame Sensor is connected to pin A0 of Arduino UNO.
- Gas Sensor is connected to pin A1 of Arduino UNO.
- PIR Sensor is connected to pin A2 of Arduino UNO.
- The Vibration Sensor is connected to pin A3 of Arduino UNO.
- The Infrared Sensor is connected to pin A4 of Arduino UNO.
For simulation, ensure all hex files are uploaded to each sensor for proper working. You can upload the source code hex file to the Arduino, by pressing Ctrl+E or by right click --> Edit properties.
Buzzer & Push Button:
- Finally, we need to add the Buzzer to sound the alarm in emergency cases, I have connected it to Pin A5 of Arduino UNO.
- I have also connected a push-button for switching the modes, connected to Pin 7 of Arduino UNO, as shown in the below figure:
- Here's the image of the complete Proteus Simulation for Home Security System:
Now let's design the Arduino programming code for Home Security Project:
Arduino Code for Home Security System
In the previous section, we have designed the Proteus simulation of the project, now let's design its Arduino Code to make it alive. Let's get started:
Initialization LCD Arduino Code
- First of all, we need to define all our variables, as you can see in the code shown in the right figure.
- I have included the Liquid Crystal Library, which is used to operate LCD.
- Next, I have defined all my sensors to the respective pins and then initialized boolean variables for storing the output of sensors.
- In the Setup loop, I have made the sensors' pins input pullup using the pinMode Arduino command.
- Finally, displayed an initialization message on the LCD screen i.e. "Home Security System using Arduino UNO By TEP".
- The message will display for around 1 second and then LCD will be cleared and the SensorDisplay function will be called, which will simply write sensors' names on the LCD screen.
- Now compile your code and add the hex file in Arduino UNO and run your PRoteus simulation.
- If everything goes fine, you will get results as shown in the below figure:
So far, we have just displayed the sensor's names, now let's read the sensors' data in the loop section:
Reading Sensors' Data
- In the loop section, first of all, we need to read the sensors' data using the digitalRead command, as shown in the code.
- After reading the sensor's data, I have called the SensorValues function, in which I have placed a check on each sensor's value and updated it on LCD.
- It's quite straightforward code, if the sensor is giving HIGH output, I am displaying Yes on LCD and if it's LOW, I am simply printing No.
- We haven't yet defined the modes, so the project will keep on reading the sensors and will display their respective value in the LCD.
- As you can see in the below figure, if the TestPin of the sensor is HIGH, its respective value on LCD is showing "Yes" and if it's LOW then "No" is written.
- Now, if you change any sensor's value, its respective value on LCD will be updated.
So, we have successfully interfaced our sensors with Arduino UNO and now it's time to add operational modes to our project.
Two Operational Modes
- As I mentioned earlier, we need to add two operational modes in our project, and the push button will be used for conversion from one mode to another.
- So, I have simply added an If loop in my code, as shown in the figure on the right side.
- In normal mode, I have simply displayed the name of the mode at the first line of LCD.
- While in secure mode, I am checking if either of the sensors goes HIGH, simply turn ON the Buzzer.
- Although, you won't be able to hear the Buzzer sound in the below figure, but you can see Buzzer's Pin is HIGH because two of the sensors are giving a response. Check the video for Buzzer working.
- We normally need to use an optocoupler or relay driver in between the buzzer and microcontroller as buzzers normally operate at 12V, but 5V buzzers are also available.
- Here's the complete Arduino Code:
/*
* All rights reserved to TEP www.TheEngineeringProjects.com
*/
#include
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
#define Flame A0
#define Gas A1
#define Pir A2
#define Vib A3
#define Ir A4
#define Buzzer A5
#define Switch 7
boolean Fire, Smoke, Intruder, Window, Door;
boolean Mode = false;
void setup() {
pinMode(Flame,INPUT_PULLUP);
pinMode(Gas,INPUT_PULLUP);
pinMode(Pir,INPUT_PULLUP);
pinMode(Vib,INPUT_PULLUP);
pinMode(Ir,INPUT_PULLUP);
pinMode(Switch,INPUT_PULLUP);
pinMode(Buzzer,OUTPUT);
lcd.begin(20,4);
pinMode(Buzzer, OUTPUT);
lcd.setCursor(0,1);
lcd.print("HOME SECURITY SYSTEM");
lcd.setCursor(0,2);
lcd.print(" USING ARDUINO UNO ");
lcd.setCursor(7,3);
lcd.print("By TEP ");
//delay(700);
lcd.clear();
SensorDisplay();
}
void loop()
{
Fire = digitalRead(Flame);
Smoke = digitalRead(Gas);
Intruder = digitalRead(Pir);
Window = digitalRead(Vib);
Door = digitalRead(Ir);
Mode = digitalRead(Switch);
SensorValues();
if(Mode==false) // Normal mode
{
lcd.setCursor(4,0);
lcd.print("Normal Mode");
}
else // Secure Mode
{
lcd.setCursor(4,0);
lcd.print("Secure Mode");
if((Fire == HIGH) || (Smoke == HIGH) || (Intruder == HIGH) || (Window == HIGH) || (Door == HIGH)){
digitalWrite(Buzzer, HIGH);
}else{
digitalWrite(Buzzer, LOW);
}
}
}
void SensorDisplay()
{
lcd.setCursor(0,1);
lcd.print("Fire:");
lcd.setCursor(10,1);
lcd.print("Smoke:");
lcd.setCursor(0,2);
lcd.print("Door:");
lcd.setCursor(10,2);
lcd.print("Window:");
lcd.setCursor(0,3);
lcd.print("Intruder:");
}
void SensorValues()
{
if(Fire == true){ lcd.setCursor(6,1); lcd.print("Yes");}
else{ lcd.setCursor(6,1); lcd.print("No ");}
if(Smoke == true){lcd.setCursor(17,1); lcd.print("Yes");}
else{lcd.setCursor(17,1); lcd.print("No ");}
if(Intruder == true){lcd.setCursor(11,3); lcd.print("Yes");}
else{lcd.setCursor(11,3); lcd.print("No ");}
if(Window == true){lcd.setCursor(17,2); lcd.print("Yes");}
else{lcd.setCursor(17,2); lcd.print("No ");}
if(Door == true){lcd.setCursor(6,2); lcd.print("Yes");}
else{lcd.setCursor(6,2); lcd.print("No ");}
}
Future Scope of Home Security System
- Embedded has taken over the whole world because of its user-friendliness and low cost.
- Instead of hiring security guards(which is quite expensive), now smart homes in modern societies are equipped with such home security systems.
- Modern Home Security systems are even linked with local police or security agencies for emergency help.
- Moreover, these security systems are not bound to homes only, nowadays offices, banks, shopping malls etc. are all equipped with such smart security systems.
Future Work on Home Security System
- Today, we have designed a very simple Home Security System, where we interfaced few sensors and have only placed a Buzzer.
- We will continue this project and will add smart features to it.
- Let's have a look at few features, which we can add to this project:
- We can interface the GSM module to send messages, in case of emergency.
- We can add more sensors i.e. ultrasonic sensors, different types of Gas sensors in it.
- We can also improve our code by using interrupts instead of polling.
- We can also add a camera for facial recognition.
- To improve the security, we can add a keypad and only authorized persons will have the access to enter.
- The fingerprint sensor can also be used for identification purposes.
No matter what happens, you should put safety first. Even a great security system won’t ensure full protection, which is why you might want to consider secondary measures. Hiring fire watch security will assist you on a daily basis, performing tasks that machines cannot. These veterans will protect your home or office, addressing potential hazards as they appear.
So, that was all for today. I hope you guys have enjoyed today's project. If you have any questions/queries, please ask in the comments and I will try my best to resolve them asap. Thanks for reading, take care. Bye :)
Home Automation Project using XBee & Arduino
Hello friends, I hope you all are fine and having fun with your lives. Today, I am going to share a new Home Automation Project using XBee & Arduino. Home Automation Project is a most commonly designed project by the engineering students. So, that's why I have thought to create a complete Home Automation Project so that engineering students can get benefit out of it.
We all know about automation which is originated from automate or automatic. In automation the task is done automatically and you don't need to control it. In normal Home automation project, there are few sensors which are displayed wirelessly to user and there are few controls like user can ON or OFF Lights, Fans etc via remote or mobile App.
In this Project, I have used Arduino UNO board and I have designed its complete working simulation in Proteus software, so that users got sure that its working perfectly. Because we have to work a lot in designing this complete working simulation of home Automation Project that's why its not free but you can buy it for a small price of $50. In this price, you will get the compelte Arduino code along with the working Proteus Simulation. But before buying this project, must have a look at the details below so that you are sure what you are buying. So, let's get started with Home Automation Project using XBee & Arduino.
Home Automation Project using XBee & Arduino
- You can buy the complete working Proteus Simulation along with the Arduino Programming Code by clicking the below button.
- You can pay via Paypal and the download link will be instantly available to you and if you don't have the PayPal account then use our Contact Us Form and we will find some other way for you.
Buy This Project
1: Overview
- First of all, let's have an overview of this Home Automation Project.
- In this Project, I have designed two simulations, one simulation is for Remote using which we are gonna control our appliances and the second simulation is for the controlling of these appliances.
- So, when you press buttons from your remote section, a wireless command will be sent to the control board and it will turn ON or OFF the respective load.
- Moreover, there's an LCD on the Remote on which you will also check the values of the sensors.
- So, in simple words, the remote will be in your hand and using this remote you can easily turn ON or OFF your appliances and can also check the status of your different sensors wirelessly.
- Let's first have a look at the remote section:
Remote Control:
- In Remote Control Section, I have used the below main modules:
- Arduino UNO: Microcontroller Board.
- KeyPad: Commands will be sent by clicking this Keypad's buttons.
- LCD (20 x 4): For Displaying Sensor's Data & Commands.
- XBee Module: It's an RF Module used for sending wireless commands.
- Now when you click any button on your Keypad, a command is sent from Arduino to XBee Module and the XBee module then forwards that command to other XBee on the Control Unit.
- Moreover, when the Control Unit sends the Sensors' data on xbee then Arduino receives that data and then displayed that data on LCD.
- Here's the block diagram of Remote control section which will give you a better idea of its working:
- Here's the Proteus Diagram of our Remote Section:
- In the above Proteus Simulation of Remote Control, you can see that we have Arduino UNO board which is connected with LCD, KeyPad and XBee Module.
- Working of this Remote section will be discussed in the later section.
- Now let's have a look at the Control Unit Side of Home Automation Project.
Note:You must also have a look at below tutorials because I have interfaced these modules separately with Arduino as well:
Control Unit:
- In the previous section, we had an overview of the Remote section, now let's have a look at the Control Unit.
- The Control Unit is the Unit which is being controlled by the Remote Control.
- The Main components of Control Unit are:
- Arduino UNO: Microcontroller Board.
- Relays: Used to control the appliances. I have added eight relays so you can control eight appliances.
- Lamps: Indicating the Bulbs.
- DC Motors: Indicating the Fans.
- Smoke Sensor: Used to detect the Smoke.
- Flame Sensor: Used for Fire detection.
- DS18B20: Used to measure atmospheric temperature.
Note:
- On this Control unit, the Arduino UNO is getting the data from the smoke sensors and then sending this data via XBee to Remote Control.
- We have seen in the previous section that this data is then displayed over LCD.
- Moreover, when any button is pressed from the Remote Control, the command is received by this Arduino via XBee.
- On receiving this command, Arduino UNO then turns ON or OFF the respective relay which in turn ON or OFF the respective appliance.
- Here's the block diagram of this control unit:
- You can see in the above block diagram that I have connected three sensors with Arduino and Arduino is receving their values and then sending these values to the remote control via XBee.
- Moreover Relays are also connected to Arduino and then loads are further connected to these Relays.
- So, Arduino is controlling these Relays which in turn are controlling the loads.
- I have used eight relays and hence eight loads.
- The Loads I have used are all DC loads because Proteus doesn't have AC active loads in it but you can place AC loads as well.
- Here's the Proteus Simulation of Control Unit:
- You can see all the modules are present in it.
- Eight relays are present on the right side and their outputs are going into the loads.
- I have used four lamps and four DC Motors.
- Now let's have a look at their operation.
Note:You should also have a look at below tutorials in which I have interfaced these sensors separately with Arduino:
2: Operation
- I have already mentioned their operation in above section so I am not gonna discuss it in detail.
- But let's have a little talk about their operation.
- First I am gonna discuss the operation of Remote Control:
Remote Control:
- The remote Control has an XBee module which is used for wireless communication.
- The Keypad has buttons on it so now when you press button "1" on the keypad then the Signal is sent via XBee to Control Unit.
- The control unit will automatically turn on the first load when it will receive the command from button "1" of Remote Control.
- When you press "1" for the first time then the first load will turn ON but when you press button "1" again then the first load will go off.
- So, its like if you want to turn it ON then press it and if you want to turn it OFF then press again. (Quite simple :P)
- As there are eigth loads, so button "1" to "8" are working for loads "1" to "8" respectively.
- Moreover, when sensor's data come from control unit then it is updated in the LCD of Remote Control.
- Now let's have a look at the operation of Control Unit:
Control Unit:
- As the Control Unit is concerned, it keeps on waiting for the command from remote and whenever a command is received from the Remote Control, it turns ON or OFF the respective load.
- Moreover, it also sends the data of sensors continuously to the Remote Control.
- For this wireless communication, XBee is used here.
3: Working
- This is the last section of this project where will will have a look at the working of the project.
- I haven't divided this section in parts instead I have create a video which will explain the working in detail.
- Here's the First look of Remote section image while working:
- Now when the Sensor's data come from the remote Section then it will be displayed in the LCD as shown in below figure:
- You can see in the above figure that both sensors are detecting and the temperature is also displayed in the LCD.
- Now the complete working of this project is shown in the below video which will give you complete idea of this project:
Note:
- If you buy this project and you are unable to run it properly then we will provide you free service and will make it work on your laptop perfectly. :)
So, that's all for today. I hope you have liked this Home Automation Project and are gonna buy this one. But again before buying it must read this tutorial and also watch the video so that you get complete understanding of this project.
Interfacing of Keypad with Arduino
Hello friends, hope you all are fine and having fun with your lives. In today's post we will have a look at How to interface keypad with Arduino in Proteus ISIS. Keypad is used almost in every engineering project. If you even look around you will find keypad in many electronic appliances. For example, a simple ATM machine has a keypad on it using which enter our pin code and give commands to the ATM machine. Similarly, calculator also has keypad on it. So, in short there are numerous applications of keypad. You should also read the Real Life examples of Embedded Systems and you will find Keypad in them as well.
Keypad is used where you need to used numerical buttons or you need to use lots of buttons for sending commands so like in some application I need to use 10 buttons so instead of using separate 10 buttons I would prefer to use keypad instead as it will save a lot of time both in hardware as well as programming. So today we will have a detailed look on How keypad works and How we can Interface keypad with Arduino in Proteus ISIS. Proteus also gives keypad component in its database using which we can easily simulate it in Proteus and can save our time. So first simulate it and then design the hardware. After today's post I will also share an Automatic Lock system project using keypad. Anyways let's get started with Interfacing of Arduino with keypad:
How keypad works ??
- Keypad uses matrix system in order to work.
- For example, I am using a keypad which has 12 buttons on it as shown in below figure:
- Now you can see its a 12 button keypad so it has total 3 columns and 4 rows and similarly there are 7 pins to control these 12 buttons.
- So, the simple formula is total number of pins = Number of Rows + Number of Columns.
- Now if we look at the internal circuitry of this 12 button keypad then it will look something as shown in below figure:
- Columns and rows are connected with each other now suppose I press button "1" on the keypad then first row and the first column will get short and I will get to know that button "1" is pressed.
- Same is the case with other buttons, for example I press button "8" then second column and the third row will get short so this code will remain unique for each button.
- In simple words, on each button press different column and row will get short we need to detect which one gets short in order to get the pressed button.
Quite simple, isn't it ?? You should also have a look at these
Arduino Projects for Beginners. So that's how a keypad works, now let's have a look at How to Interface this keypad with Arduino in Proteus ISIS.
Interfacing of Keypad with Arduino in Proteus ISIS
- So, now we are gonna interface this keypad with Arduino in Proteus ISIS which is as always my favorite simulator.
- In Proteus design a circuit as shown in below figure:
- So, we have an Arduino UNO board along with keypad and LCD.
- So I have done the programming in such way that whenever you press any button on the keypad, it will get displayed on the LCD.
Note:
- Now, copy the below code and paste it in your Arduino software and get the hex file from it.
#include <LiquidCrystal.h>
#include <Keypad.h>
const byte ROWS = 4; //four rows
const byte COLS = 3; //three columns
char keys[ROWS][COLS] = {
{'1','2','3'},
{'4','5','6'},
{'7','8','9'},
{'*','0','#'}
};
byte rowPins[ROWS] = {10, 9, 8, 7}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {13, 12, 11}; //connect to the column pinouts of the keypad
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(A0, A1, A2, A3, A4, A5);
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(20, 4);
lcd.setCursor(1,2);
lcd.print("www.TheEngineering");
lcd.setCursor(4,3);
lcd.print("Projects.com");
lcd.setCursor(0,0);
}
void loop() {
char key = keypad.getKey();
if (key) {
lcd.print(key);
}
}
- Now upload the hex file in your Arduino UNO in Proteus ISIS and hit the RUN button.
- If everything goes fine then you will get something as shown in below figure:
- Now, when you press any button on the keypad it will also appear on the LCD as shown in below figure:
That's all for today. In the coming post I am gonna share a small project in which we will design a automatic locking system using this keypad. So stay tuned and have fun. :)