11 Level 3-phase Cascaded H Bridge Inverter

Buy This Project

Hello friends, i hope you all are fine and enjoying. In this post i am going to share a new project tutorial, in which we will see how to design an 11 Level Cascaded H Bridge Inverter. If you recall my previous tutorial, in which we saw the design and working applications of 11 Level 3-phase Capacitor Clamped Inverter, then you can see its exactly the same project but only we are having a different approch in it, instead of using Capacitor clamped we are using cascaded H bridge Inverter in this project.

In this project we again are going to design an inverter but the only difference is The Implementation Technique. In that project we used Capacitor Clamped technique to get High Voltages inverted AC and now in this project, we will use Cascaded H-Bridge technique to design an Inverter. We have designed this Cascaded H bridge Inverter project in Simulink MATLAB. So i will explain this project tutorial in steps. First of all we will discuss the block diagram of the project, which we have made in Simulink. Then we will discuss the internal structure and the components which are implemented in the block diagram. And in the end we will see the applications of the cascaded H-Bridge inverters. I think this was enough for introduction and Now let's get practical and without wasting any time i think we should move towards the designing of the cascaded H Bridge 3-phase inverter.

11 Level 3-Phase Cascaded H Bridge Inverter

  • A cascade H Bridge Inverter is a power electronic device, built to synthesize a desired AC voltage from several level of DC voltages.
  • Cascaded H Bridge inverter can be implemented by using only a single DC source or capacitors or multiple DC sources.
  • A standard cascade multilevel inverter requires 'n' DC sources to produce '2n+1' levels.
  • The beauty of this system is that it can allow us to gain the desired levels of AC without using any type of Transformer.
  • It allows us to simultaneously maintain the DC voltage level of the DC source and choose a fundamental frequency switching pattern to produce a nearly sinusoidal AC output.
  • The block diagram of the Cascaded H Bridge Inverter designed in Simulink MATLAB is shown in the image given below:
  • From above figure, you can see that we have on the extreme left side we have inputs of the systems and they are numbered as 'pulse'.
  • Since we are going to design a multilevel inverter, which is a 11 Level inverter and to get that much levels, we also need multiple DC inputs.
  • In this system, we have 30 DC inputs and they are numbered as 'pulse1-pulse30'.
  • From the title of the project, you can understand that we are going to design a 3-phase inverter and for that we must have 3 control units to get three phase voltages.
  • All the inputs are going to three big blocks which are named as ' Cascaded H-Bridge Inverter'. If you double click on that block then, a new window will open which will show the internal mechanism of this big block.
  • This window is shown in the image given below:
  • The above figure is very important and it is showing what actually is happening in that block. Since the components encrypted in each block are large so the above figure is showing half of the components.
  • 10 inputs are connected to each block and in the above shown block we have 5 inputs.
  • Every input is connected to a H shape bridge. In every H-shaped bridge, we have 4 sub-blocks. In order to under the mask of the sub-blocks, Double click on them and a new window will open, which will be representing the internal structure of sub-block.
  • That small window is shown in the image given below:
  • Now from the above figure, you can see that every sub-block contains an ideal IGBT, Gto or MOSFET and antiparallel diodes.
  • In these H-bridges we have implemented MOSFET transistor for switching. Reason is that they have mush fast response and are capable to perform switching at high speed.
  • Below are some parameters of transistors, which are fabricated in sub-blocks.
  • An important thing to note here is that for MOSFET 'Snubber Resistance (Cs)' is infinite in OFF state. This is because in OFF state it doesn't allow the current to pass through it.
  • Once MOSFET is triggered then it will keep on conducting and after that we will have to stop it manually.
  • Now if you again focus the first block diagram then, you will observe that each block is giving only value of phase voltages at its output.
  • From three blocks, we get three phase voltages and then to measure these voltages, we have 2 types of measuring devices.
  • First type of voltmeter will measure the phase voltages and you can see that all the three phases are connected to that instrument.
  • Phase voltage is the potential difference between a single phase and neutral wire. Since no neutral wire is connected to this instrument and the meter will take the system's neutral wire to measure the voltages.
  • The other meter measures the Line voltages. Line voltages are the potential difference between any two phases. At our meters input we have Line Voltages like AB, BC and CA.

RESULTS

  • We have connected two different types of voltmeters in our system. One will give the graphical representation of phase voltages and the other will give the graph of Line voltages.
  • The graph of phase voltages is given below in the image:
  • The above graph is representing the phase voltages of all the three phases, which we have generated in our system.
  • You can see that all the three phases are at an angle of 120 degrees to each other.
  • The graph of line voltages is shown in the image given below:
  • The above graph is showing the 3-phase line AC voltages.
  • You can see that some cornered square wave is obtained at output. Corners are appearing in output wave due to switching of MOSFET transister, we have used in our project.
  • A proper filter circuit can eliminate this flaw and a fine AC can been obtained at output.

Alright friends, that was all from today's post. I hope you guys have enjoyed this H Bridge Inverter. If you have any question then ask in comments and i will try my best to resolve the issue. For more tutorials stay tuned. Till next tutorial Take Care !!! :)

Analysis of Sinusoidal Pulse Width Modulation of AC Signal

Hello friends, hope you all are fine and enjoying. Today I am going to share a very interesting tutorial which is Analysis of Sinusoidal Pulse Width Modulation of AC signal. I will try to explain this tutorial in parts. I will explain the code step by step and at every step we will see that what are the purpose of commands, which are written in that particular code. Before doing that first of all let me explain what is meant by Pulse Width Modulation.

Pulse Width Modulation or PWM is a technique which is used for getting Analog Results with digital means. We can say that some Digital Control or some Electronics algorithm is used to generate square waves. Square wave is in fact a signal which is generated through switching between ON & OFF states. There are no of ways to generate PWM. For example in modern electronics projects PWM is generated through some type of micro controllers or 555 Timers. If you recall my previous project tutorials, in which I have generated PWM through 555 timer. Since in this tutorial we are working with-in MATLAB premises so we will only discuss CODE and no hardware design involved in this tutorial. Now without wasting any time, I think we should move towards the CODE of the project. Stay tuned and believe me you will learn something new from this project.

You should also read:

Analysis of Sinusoidal Pulse Width Modulation of an AC Signal

  • First of all open your MATLAB software and a command window will appear. Now first thing to do is to clear the command window and remove all the previous variables or functions from MATLAB.

  • This is done through MATLAB language and we have commands to do this. The commands are given below:

clc clear all disp('Sinusoidal Pulse Width Modulation of AC Signal') disp(' ')
  • 'clc' and 'clear all' command will clear the command window and remove all the variables already existing.
  • Then the next command is 'disp(' ')' , and this command is used to display anything in command window. In dispaly command i have written the title of my project, which is "Sinusoidal Pulse Width Modulation of AC Signal" .
  • Now coming towards part 2, which is to enter some information from user side. Since we are analyzing the PWM of AC signal and we need to enter the data of that particular signal, which we are going to analyze.
  • The code to do all this is given below:
Vrin=1; f=input('The frequency of the input supply voltage, f = '); Z=1; ma=input('the modulation index,ma, (0<ma<1), ma = '); phi=input('the phase angle of the load in degrees = '); Q=input('The number of pulses per half period = ');
  • The first command is 'Vrin' which is RMS value of the supply voltage in Per Unit. As you know that the maximum value of Per Unit is one, so i have kept its value equals to 1.
  • In the next steps, you can see that i have given the 'input' command. This command is used at that place if we need data from external source, which means if user will enter that data according to the input signal.
  • As you can see in the above code that Firstly it is asking frequency then comes the variable 'Z', which is load impedence in per-unit and we have kept its value 1.
  • 'ma' is the modulation index and its value varies from 0 to 1.
  • 'phi' is the phase angle of load in degrees.
  • 'Q' is the no. of pulses per half period of the given cycle. MATLAB code will ask these values from user to enter them manually according to the that signal, which is under consideration.
  • Coming towards the Third part of the CODE, which is to calculate load parameters. The parameters of the load signal which we have entered in the above commands (part 2).
  • MATLAB Commands to calculate phase angle, Resistance and Inductance of the the load are given below:
phi=phi*pi/180; R=Z*cos(phi); L=(Z*sin(phi))/(2*pi*f);
  • 'phi' is the load phase angle in degrees. while the other 'pi' is a built-in MATLAB function. In MATHEMATICS pi has a constatnt value which is '2.14' .
  • Next 2 formulas the used to calculate Resistance(R) and Inductance(L) of the load respectively.
  • Up till now we have entered the known values of the signal under examination. No in the next part of the tutorial, we are going to calculate the no of pulses per period of the sine wave or AC Signal under consideration.
  • MATLAB command to calculate the period of an AC signal is given below:
N=2*Q;
  • This is a simple product formula. 'Q' is the no of pulses per half period and when we will multiply it with 2, we get no of pulses in full period, which is 'N'.
  • Period of an AC cycle can be defined as the time taken by the AC voltage to complete its one cycle. Period is reciprocal of Frequency. Frequency can be defined as the no of waves passing through a particular point in one second. Both these terms are necessary to explain AC signal.
  • In the next part of the code, we are going to develop a function to generate a saw-tooth voltage from the given input parameters of the signal.
  • In each period of the sawtooth, there is one increasing and decreasing part of the sawtooth, thus the period of the input supply is divided into into 2N sub-periods. The function to develop this sawtooth voltage is given below:
for k=1:2*N for j=1:50 i=j+(k-1)*50; wt(i)=i*pi/(N*50); Vin(i)=sqrt(2)*Vrin*sin(wt(i)); ma1(i)=ma*abs(sin(wt(i))); if rem(k,2)==0 Vt(i)=0.02*j; if abs(Vt(i)-ma*abs(sin(wt(i))))<=0.011 m=j; beta(fix(k/2)+1)=3.6*((k-1)*50+m)/N; else j=j; end else Vt(i)=1-0.02*j; if abs(Vt(i)-ma*abs(sin(wt(i))))ma*abs(sin(wt(i))) Vout(i)=0; else Vout(i)=Vin(i); end end end beta(1)=[];
  • The above part code seems to be bit lengthy but it is not that difficult to understand. Since in the previous part we have generated a saw-tooth voltage and we need to calculate its period.
  • To calculate period, we have introduced some counters in our code named i,j and k. 'i' is the generalized counter.
  • 'k' is the counter, used to count sub-periods and 'j' is the counter inside these sub-periods. From the beginning of the above part, we have defined a generalized counter, then we have calculated supply voltages through modulation of index.
Few MATLAB Projects:
  • Then i have written a conditional loop consisting of 'if' and 'else' and we have generated a saw-tooth waveform from it.
  • In the end, the final value of this saw-tooth voltage is saved in variable named 'beta'.
  • Up-til now we have generated a saw-tooth voltage and we have calculated the beginning value (alpha) ,ending value (beta) and the period (width) of this saw-tooth voltage.
  • Now in the next part we will write the command to display all these values of the saw-tooth voltage curve. Part of CODE is given below:
disp(' ') disp('......................................................................') disp('alpha beta width') [alpha' beta' (beta-alpha)']
  • In this step, we will simply display the values of the saw-tooth voltage, which we have generated in the above code.
  • Now we will write a CODE to plot the graphs of the the voltage curve, we have generated above:
a=0; subplot(3,1,1) plot(wt,Vin,wt,a) axis([0,2*pi,-2,2]) title('Generation Of The Output Voltage Pulses ') ylabel('Vin(pu)'); subplot(3,1,2) plot(wt,Vt,wt,ma1,wt,a) axis([0,2*pi,-2,2]) ylabel('Vt, m(pu)'); subplot(3,1,3) plot(wt,Vout,wt,a) axis([0,2*pi,-2,2]) ylabel('Vo(pu)'); xlabel('Radian');
  • The title of this graph is generation of output voltage pulses and it will plot the graphs.
  • In next step, we will examine the output voltage curve. Its RMS value. HARMONIC components present in it and THRESHOLD value. CODE to examine all this is:
Vo =sqrt(1/(length(Vout))*sum(Vout.^2)); disp('The rms Value of the Output Voltage ') Vo y=fft(Vout); y(1)=[]; x=abs(y); x=(sqrt(2)/(length(Vout)))*x; disp('The rms Value of the output voltage fundamental component = ') x(1) THDVo = sqrt(Vo^2 -x(1)^2)/x(1);
  • The formulas to calculate all these parameters of output voltage curve are given in the above code.
  • Uptil now, we have calculated all the parameters of output voltage curve and now i am going to calculate the current parameters of the output curve. The algorithm to calculate the output current wave-form is given below:
m=R/(2*pi*f*L); DT=pi/(N*50); C(1)=-10; i=100*N+1:2000*N; Vout(i)=Vout(i-100*N*fix(i/(100*N))+1); for i=2:2000*N; C(i)=C(i-1)*exp(-m*DT)+Vout(i-1)/R*(1-exp(-m*DT)); end
  • Now we are going to calculate all the parameters of the current waveform, which we previously explained for the output voltage waveform. Now we are going to calculate the RMS value, Harmonic component and Threshold value of the output current. CODE to do all this is given below:
for j4=1:100*N CO(j4)=C(j4+1900*N); CO2= fft(CO); CO2(1)=[]; COX=abs(CO2); COX=(sqrt(2)/(100*N))*COX; end CORMS = sqrt(sum(CO.^2)/(length(CO))); disp(' The RMS value of the load current is') CORMS THDIo = sqrt(CORMS^2-COX(1)^2)/COX(1);
  • All the above data and results were to monitor output parameters.
  • Now we are going to calculate the current parameters of input supply voltages.
  • first of all, i will find the input supply current and then i will analyze this supply current. Find its RMS value, Find its Fourier series, its displacement factor and Threshold value of the input supply current. The CODE to perform all this work simultaneously is given below:
for j2=1900*N+1:2000*N if Vout(j2)~=0 CS(j2)=C(j2); else CS(j2)=0; end end for j3=1:100*N CS1(j3)=CS(j3+1900*N); end CSRMS= sqrt(sum(CS1.^2)/(length(CS1))); disp('The RMS value of the supply current is') CSRMS CS2= fft(CS1); CS2(1)=[]; CSX=abs(CS2); CSX=(sqrt(2)/(100*N))*CSX; THDIS = sqrt(CSRMS^2-CSX(1)^2)/CSX(1); phi1 = atan(real(CS2(1))/imag(CS2(1)))-pi/2; PF=cos(phi1)*CSX(1)/CSRMS;
  • Up till now we have calculated all the parameters and now we are going to draw a table in MATLAB and it will show all the results simultaneously.
  • The combined code to display all the parameters on the output window is given below:
disp(' Performance parameters are') THDVo THDIo THDIS PF a=0; figure(2) subplot(3,2,1) plot(wt,Vout(1:100*N),wt,a); title(''); axis([0,2*pi,-1.5,1.5]); ylabel('Vo(pu)'); % subplot(3,2,2) plot(x(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Von(pu)'); subplot(3,2,3) plot(wt,C(1900*N+1:2000*N),wt,a); title(''); axis([0,2*pi,-1.5,1.5]); ylabel('Io(pu)'); subplot(3,2,4) plot(COX(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Ion(pu)'); subplot(3,2,5) plot(wt,CS(1900*N+1:2000*N),wt,a); axis([0,2*pi,-1.5,1.5]); ylabel('Is(pu)'); xlabel('Radian'); subplot(3,2,6) plot(CSX(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Isn(pu)'); xlabel('Harmonic Order');
  • In the above code 2 commands are used in excess. First one is 'plot', which is used to plot any particular function in MATLAB and the second command is 'subplot' which is used to draw multiple plots like 2 or 3 plots in the same window.
  • When you will write all this CODE and you will run it then, graphs will appear according to the data you entered to examine that particular signal.
 

RESULTS

  • The graphical results of all the above tutorial will be displayed in this section. First of all, when you will run the M-file then command window will appear and it will ask you give some input values of the supply voltages.
  • Such command window is shown in the image below:
  •  After inputing these values, the above given algorithm will start plotting the graphs, the firsst graph is shown in the below figure:
  •  Next plot is shown below, the graphs are labelled that's why I am not explaining them much.
  • It will also give some other values in the MATLAB's command window, a screenshot of these values is as follows:
  • Here's the complete programming code for this project:
clc clear all disp('Sinusoidal Pulse Width Modulation of AC Signal') disp('  ') Vrin=1; f=input('The frequency of the input supply voltage, f = '); Z=1; ma=input('the modulation index,ma, (0<ma<1), ma = '); phi=input('the phase angle of the load in degrees = '); Q=input('The number of pulses per half period = '); phi=phi*pi/180; R=Z*cos(phi); L=(Z*sin(phi))/(2*pi*f); N=2*Q; for k=1:2*N for j=1:50 i=j+(k-1)*50; wt(i)=i*pi/(N*50); Vin(i)=sqrt(2)*Vrin*sin(wt(i)); ma1(i)=ma*abs(sin(wt(i))); if rem(k,2)==0 Vt(i)=0.02*j; if abs(Vt(i)-ma*abs(sin(wt(i))))<=0.011 m=j; beta(fix(k/2)+1)=3.6*((k-1)*50+m)/N; else j=j; end else Vt(i)=1-0.02*j; if abs(Vt(i)-ma*abs(sin(wt(i))))<0.011 l=j; alpha(fix(k/2)+1)=3.6*((k-1)*50+l)/N; else j=j; end end if Vt(i)>ma*abs(sin(wt(i))) Vout(i)=0; else Vout(i)=Vin(i); end end end beta(1)=[]; disp('  ') disp('..........................................') disp('alpha    beta    width') [alpha'  beta'  (beta-alpha)'] a=0; subplot(3,1,1) plot(wt,Vin,wt,a) axis([0,2*pi,-2,2]) title('Generation Of The Output Voltage Pulses ') ylabel('Vin(pu)'); subplot(3,1,2) plot(wt,Vt,wt,ma1,wt,a) axis([0,2*pi,-2,2]) ylabel('Vt, m(pu)'); subplot(3,1,3) plot(wt,Vout,wt,a) axis([0,2*pi,-2,2]) ylabel('Vo(pu)'); xlabel('Radian'); Vo =sqrt(1/(length(Vout))*sum(Vout.^2)); disp('The rms Value of the Output Voltage ') Vo y=fft(Vout); y(1)=[]; x=abs(y); x=(sqrt(2)/(length(Vout)))*x; disp('The rms Value of the output voltage fundamental component = ') x(1) THDVo = sqrt(Vo^2 -x(1)^2)/x(1); m=R/(2*pi*f*L); DT=pi/(N*50); C(1)=-10; i=100*N+1:2000*N; Vout(i)=Vout(i-100*N*fix(i/(100*N))+1); for i=2:2000*N; C(i)=C(i-1)*exp(-m*DT)+Vout(i-1)/R*(1-exp(-m*DT)); end for j4=1:100*N CO(j4)=C(j4+1900*N); CO2= fft(CO); CO2(1)=[]; COX=abs(CO2); COX=(sqrt(2)/(100*N))*COX; end CORMS = sqrt(sum(CO.^2)/(length(CO))); disp(' The RMS value of the load current is') CORMS THDIo = sqrt(CORMS^2-COX(1)^2)/COX(1); for j2=1900*N+1:2000*N if Vout(j2)~=0 CS(j2)=C(j2); else CS(j2)=0; end end for j3=1:100*N CS1(j3)=CS(j3+1900*N); end CSRMS= sqrt(sum(CS1.^2)/(length(CS1))); disp('The RMS value of the supply current is') CSRMS CS2= fft(CS1); CS2(1)=[]; CSX=abs(CS2); CSX=(sqrt(2)/(100*N))*CSX; THDIS = sqrt(CSRMS^2-CSX(1)^2)/CSX(1); phi1 = atan(real(CS2(1))/imag(CS2(1)))-pi/2; PF=cos(phi1)*CSX(1)/CSRMS; disp(' Performance parameters are') THDVo THDIo THDIS PF a=0; figure(2) subplot(3,2,1) plot(wt,Vout(1:100*N),wt,a); title(''); axis([0,2*pi,-1.5,1.5]); ylabel('Vo(pu)'); % subplot(3,2,2) plot(x(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Von(pu)'); subplot(3,2,3) plot(wt,C(1900*N+1:2000*N),wt,a); title(''); axis([0,2*pi,-1.5,1.5]); ylabel('Io(pu)'); subplot(3,2,4) plot(COX(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Ion(pu)'); subplot(3,2,5) plot(wt,CS(1900*N+1:2000*N),wt,a); axis([0,2*pi,-1.5,1.5]); ylabel('Is(pu)'); xlabel('Radian'); subplot(3,2,6) plot(CSX(1:100)) title(''); axis([0,100,0,0.8]); ylabel('Isn(pu)'); xlabel('Harmonic Order');
  That's all for today. I have tried my best to explain it in detail but still if you get into some trouble then ask in comments.

Traffic Signal Control using 555 Timer in Proteus ISIS

Hello Friends, i hope you all are fine and enjoying. Now i am going to share my new project tutorial which is Traffic Signal Control using 555 Timer. Up till now i have uploaded a no. of projects using 555 timer and i have got much appreciation from my friends, for some 555 timer based projects like How to use Capacitive Touch Sensor in Proteus ISIS, Sequential LED Blinking using 555 Timer and many more.

Now i am going to share another application of 555 Timer and here we will be using a shift register (4017) next to 555 timer to implement Traffic Signal Control circuit. 4017 is a SERIAL IN PARALLEL OUT shift register. Data enters in a serial manner into register and it leaves the register in parallel manner. 4017 is a 10-bit shift register and it needs a clock pulse to shift data from serial input pin to parallel output pins. Now we need a device which can provide continuous clock pulse to Shift Register. Clock pulse is generated either from Micro-controllers or some sort of timers. Here we will be using 555 Timer to generate clock pulse. It is a very easy project to understand and also very simple to implement. These type of projects are generally designed by the Engineering students in their First or Second semester. Now i am done with the theory of the circuit and now lets move towards the designing of the project.

You can also download the complete simulation of the above described project by simply clicking on the button given below:

Traffic Signal Control using 555 Timer in Proteus ISIS

  • First of all place all the components in your proteus workspace,as shown in the image below:
  • Threshold voltage for 555 Timer is 5 volts, and when voltages exceeds this level, 555 timer triggers and it generates a output pulse at its output pin which is ‘Q’ pin.
  • In this project, we will be using a battery of 12 volts as supply voltages.Positive pin (+) of source is connected to Vcc pin of 555 Timer and the Negative pin (-) is connected to GND pin of 555 timer.
  • Pin#3 of 555 timer is connected to CLK pin of shift register and this pin is the data input pin of shift register. Through this pin, 555 timer send data to shift register.
  • At output pins of shift register we have connected 3 Leds, RED, YELLOW and GREEN. Same colors which are used in Traffic Signals.
  • RED led is connected to output pin#12.  YELLOW LED has 2 parallel inputs that are pined at pin#10 and pin#11 respectively. Diodes are connected the way of inputs to block reverse currents. YELLOW led will glow if any of the input will be HIGH.
  • GREEN led has 4 parallel inputs connected at pin# 1,5,6,9 respectively. GREEN led has to blink for longer time, that's why we have connected multiple inputs to it. GREEN led will keep on glowing as along as any of the input will be HIGH.
  • If you connected all the components in their exact position and all the connections are OK, then the final circuit will look like as shown in the image below:
  • Now if you look the above circuit closely then, you will observe that we have connected high valued capacitor (47uf) in the way of trigger pin of 555 timer.
  • The purpose of capacitor is to produce lag in the clock generated by 555 Timer.
  • Now when you will play the simulation then LED will start to glow in periodic manner. First RED led will blink, then YELLOW led will glow and in the end GREEN led will start to glow.
  • All these stages are shown in the image given below:
  • As you can see that state#1 represents the "STOP" state, which means that traffic has to stop.
  • State#2 represents "GET READY" state and it means get ready to GO but you are not allowed to go yet.
  • State#3 represents "GO" state, in which traffic is allowed to Go.

Alright friends that was all for today's project. It was a very simple tutorial and most of its portion have been explained in previous tutorials. So i haven't explain it in much detail. But still if you have any problem then, don't feel shy to ask in the comments. Till next tutorial Take Care !!! :)

Fault Detection of Gas Turbine in MATLAB

Buy This Project

Hello friends, I hope you all are fine and enjoying. Today i am going to share a new project which is Fault Detection of Gas Turbine in MATLAB. In this project, i will try to elaborate that, What is a Gas Turbine? What are the operating parameters of a Gas Turbine? Mostly what type of Faults and Vibrations comes in Gas Turbine system during its operation? Gas Turbine is also called a Combustion Turbine. It has Four Basic components which includes Compressor, Combustion Chamber, Turbine and Alternator.

Generally compressor is installed upstream and the Rotating turbine is connected downstream and the Combustion Chamber is connected in between both of them and at the end of line we have Alternator which is also connected on the same shaft.Gas Turbine operates on "Brayton Cycle". Gas Turbine can be divided into 2 main sections, COLD Section and HOT Section, as shown in the above feature image. COLD Section includes Compressor and the HOT Section includes Turbine and and Exhaust portion. First of all, Compressor in-takes the Fresh atmospheric air and after compression it gets to high pressure, next comes the Combustion Chamber in which fuel is sprayed continuously and ignites the air so that combustion generates a High-Temperature Flow. In the next stage, this high temperature and high pressure gas enters into turbine and it releases its energy to turbine blades and the Turbine starts to rotate. A synchronous generator is also connected on the same shaft of the Turbine and when turbine gets to its rated rpm, then synchronous generator starts to generate electricity. Gas Turbines are of different Sizes and Ratings. The operation of Gas Turbine includes to monitor a large no of parameters. For example During the operation of Gas Turbine, a large no. of equipments are operating simultaneously and there are always chances  of some fault occurrence and some abnormal vibrations. Although we also have a large no of primary and secondary protection equipments installed but we still need very careful monitoring of the system for its safe operation. Gas turbines are widely used in aircraft engines, trains, ships and coupled with electrical generators to generate electricity.

It was quite a tough job of design the Model of Gas Turbine in Simulink and it includes a lot of our team efforts, so we haven't made it a open source and we have placed a very small amount for this which is, 10$ only. You can click on the above button to purchase the complete control model of Gas Turbine in Simulink. Above was a small introduction about the basic components of Gas Turbine and their operation. Now lets move towards the designing of the Fault Detection of Gas Turbine in MATLAB.

You may also like to read:

Fault Detection of Gas Turbine in MATLAB

  • In order to observe the Fault Detection of Gas Turbine in MATLAB, we are gonna use Simulink which is available in MATLAB.
  • The complete Simulink model of Gas Turbine is shown in the image given below:
  • First of all fresh air from atmosphere is entered into the system and and next to that we have a  'Reference Filter', which removes dust particles from air.
  • Next to that, we have a Mu- Law compressor and to see the other properties of this compressor you will select that icon and then right click on it, a window will open and then you will click on option 'look under mask' .
  • When you will click that option, a new window will open in Simulink and it will be representing the actual parameters of Mu-Law compressor.
  • You can see that in the figure given below:
  • The output of Mu-Law compressor comes to a summing junction and at this junction, we also have another input which is of Combustor Heat.
  • The output of the summing junction goes to the combustor delay and exhaust delay.
  • The output of combustor delay and the exhaust delay is connected to a scope.
  • The purpose of scope is to see the actual output graphical parameters of the of the combustion delay and exhaust delay and we can also check some abnormalities through it.
  • The output of combustor relay goes to Gas Turbine Dynamics. It is Gas Turbine built in function and it is used to observe the dynamic behavior of Gas Turbine. The Gas Turbines Dynamics control are shown in the image below:
  • The output of Gas Turbine goes to 'Throttle and Manifold' control. This control is observing the air intake dynamics of the gas turbine.
  • If you double click on it, then a new window will open which will be showing the embedded close loop system of 'Throttle and Manifold ' control, which can be easily seen in the image given below:
  • First comes the throttle angle control of gas turbine. It has three inputs.
  • First input is the Throttle angle 'Theta' and this angle is measured in 'degrees'.
  • Second input is of the atmospheric pressure which is measured in 'bar', as you can see in the above image.
  • Third input is of the 'Manifold Pressure' and it is also measured in bar.
  • Manifold is actually the output of second control system which is also embedded in the same system.
  • From above image, we see that on the next stage, output of 'Throttle Control' is actually the the input of 'Manifold Control' system and second input of manifold system is Engine Speed which is actually the speed of Gas Turbine and it is measured in rad/sec.
  • The whole output of all the system is Air Charge. As i described earlier that when fresh atmospheric air is burned in the combustion chamber then High Temp and High Pressure Air charge is produced.
  • Now this High Temp and High Pressure Air charge goes to the next control system which is 'Induction to power stroke Delay'. In order to observe the properties of this system, you simply double click on the function and a new window will open, which is shown in the image given below:
  • As you can see in the above image, we have 2 inputs to this system. First one is Air charge and second one is running speed of the turbine.
  • If you closely observe the image then, you will notice that we have place 2 inputs to control model  named as 'Divide1'. It is actually a comparator and it is continuously comparing the actual running speed of the turbine and the constant reference value.
  • Whenever speed will deviate from its reference value then error will be generated.
  • Both these inputs goes to the next control box which is, 'variable time delay'. It continuously monitors the ratio of air charge flowing into the system and the corresponding turbine speed. For example, whenever the pressure or temp of the inlet steam will vary then, turbine speed will vary and this control model will generate an error, which will tell us that some abnormalities are going on in the system.
  • Next comes the 'Engine Torque Control' . It has 2 inputs. First input is of the Air Charge and the second input is the speed of the Turbine. If you double click on this control model then, a new window will open representing its properties. That window is shown in the image below:
  • Engine Torque is defined by 4 input parameters. First is Air charge and you can see that Air Charge input also goes to the Stoichiometric Fuel burning mechanism of combustion chamber. This is because the combustion chamber burns the fuel according to already existing temp and pressure of the charged air.
  • If the temp of the air entering the combustion chamber is much low then, it will have to burn more fuel to get the proper temp and pressure of the air.
  • Third input is of the 'Spark Advance'. It monitors that either spark plug is igniting the fuel with proper timing or not. If the spark plug doesn't ignite the fuel on exact time then, unburnt fuel particles will comes through exhaust hole. and engine will not run smoothly.
  • Fourth input is of the speed of the turbine. Engine Torque control also monitors the existing speed of the turbine. and turbine is not running with the proper speed then, it will decide either it has to open more fuel to get it to proper speed or there is some issue going with spark ignition system.
  • All these parameters define the Engine's torque and if there is any problem with any of the input then output torque will also vary accordingly.
  • All these system's output goes to the Function Block Parameters and this block converts angular velocity to rpm. It is in fact a techogenerator.
  • Techogenerator is in fact a sensor, which is mounted in the shaft of any rotating mechanism and it records the angular speed of the shaft and generates a electrical signal in form of RPMs. It continuously monitors the angular speed of the turbine and then it converts it to RPM.
  • In the next stage, output of techogenerator goes to the summing junction. This junction has 2 inputs. First input is from techogenerator and the second input is from external disturbance.
  • External Disturbance has a very important role in defining the safe operation of any system. It not only disturbs the system but in severe conditions, it can also collapse the system.
  • In the next and final stage, we have a Gear Box model of the Gas turbine. If we double click on it then a new window will open, which will be representing its internal parameters. The internal detail of this control model is shown in the image given below:
  • It is the most important control model of Gas Turbine. It has only one input which is rpm of turbine and this input is coming from techogenerator.
  • As you can see in the above given image that, it monitors RPM, Vibrations, Over Vibrations, Dangerous Vibrations and Bearing factor errors.
  • Now if you note from the above given image then you will see that RPM, we have connected a scope and the factors which needs continuous monitoring are over vibrations and Bearing Factor error.
  • When we will run the simulation, the the system will monitor it completely from first stage to final stage (which is from inlet fresh air to RPM of Gas Turbine) . If any problem comes in the system then turbine speed will vary.
  • Dear friends, the beauty of any project's simulation is that we can put abnormalities in our system and then, we can monitor the system's behaviour under these abnormalities. This thing helps in improvising new technology and also lead us to a better design of the system.
  • Now in the above figure, we hava a control model named 'variation of the system'. when you will double click on that then, a third small window will open, which is shown in the image given below:
  • If you look closely the option named "Constant value" then here we can change the vibrations inserted in the system. Here we change the value according to our own choice and we will start from 1 and then go to maximum value (12) and observe the behaviour of Gas Turbine.
  • Now i am going to create some abnormalities on the above system's and we will see their results and then we will conclude either they are dangerous or not.

RESULTS

  • We have seen the detailed explanation of "Fault Detection of Gas turbine in MATLAB" and I hope till now you got much familiar with how its operating. So now lets have a look at the results of this simulation.
  • First of all, i am going to keep vibrations of the system at 1 then i will play the simulation then the Gear Box will generate the following results, as shown in the image below:
  • Now we can see that as we have set the vibration value to 1 so there's no errors gennerated by the simulation. In other words, our gas turbine is running smoothly and is not generating any erros.
  • Now i am going to increase the vibrations of the system and i am going to keep its value 10.Then the generated results are given as:
  • From above figure, you have seen that System is generating over speeding error and Bearing Factor error but they are not Dangerous yet and system can also run under these conditions.
  • In the next stage, i am going to increase the vibrations of systems a little more and i will make its value 12. Now we will observe the output of the system from the below figure:
  • From above figure, we can easily see that i have increase the vibrations of the turbine upto that extend that it has generated the Dangerous alarm. Now we must immediately stop the system and if we didn't do that, then the system will collapse.
  • Now i am going to share the graphs of the no. of Scopes we have added in our system.
  • Output graph of "Scope # 1" is given in the figure below:
  • Above graph is of scope#1 and it is representing the curves of 'Combustor Delay' and 'Exhaust Delay'.
  • The output graph of the next scope, added in the system is given in the image below:
  •  The above figure is showing the curves of 2 different functions. First is Thermocouple Transfer Function and the next is of Temperature Reference.
  • The output graph of the scope#2 is shown in the image below:
 
  •  In the above graph, we have 3 curves. Straight curve is of HEAT. Since turbine is running at normal temp and no over heating is produced in it.
  • The green curve is of Combustion delay and Exhaust Delay. This is a very abrupt curve. To make it smooth,we have added another control model named as "Transfer Function 1". That's why the yellow curve is the final curve and it is rather smooth than the other two.
  • Now in the end, i am going to share the output curve of scope#5, which is shown as below:
  •  The above graph is of the RPM of the turbine. As we can see that in the begining, when the simulation was OFF then, curve was at zero. Then we started the simulation and the infact turbine started and it started to accelerate and it gained it max speed which is 10,000 rpm within 10 seconds. which can be verified from above image.
Alright Friends, the above tutorial was a little bit lengthy but it was very interesting and have a large no of industrial applications. If you have any questions regarding above tutorial then, don't hesitate to ask and i will try my best to satisfy you. Follow us to get the whole simulations straight in your inbox. Till next tutorial Take Care !! :)

How to create a GUI in MATLAB ?

Hello friends, I hope you all are fine and enjoying life. Today i am going to share a new project tutorial which is How to create a GUI in MATLAB ? First of all, lets have a little introduction that what is meant by GUI? How it is created and what are the uses and applications of GUI? GUI stands for Graphical User Interface. We all know the basics of MATLAB that it is used for creating complex algorithms and to create Simulink simulation, but we don't know that it aalso has another feature which is to create GUIs. The algorithms developed in MATLAB works on the background and do their tasks while MATLAB also emphasis on the user interaction that's why it has also provided us with GUI so that we can create a user friendly front end interface for our algorithm.

So, in today's post, we are gonna have a look at How to create a GUI in MATLAB so that we could also give a user friendly front end to our algorithms. MATLAB GUI has an extensive database with a lot of functionalities, which I can't cover in one post but atleast today, I will make you able to create a simple GUI and will also explain How to control buttons and edit/text boxes etc. After performing this tutorial, you will be able to try GUI on your own.

So, today we will create a simple project in which we will create a simple GUI as shown in below image. The functionality of this GUI will be that when you click on this START button then the text,you have written in the white edit box will appear at the text box above, as shown in figure below. Let's get started with the implementation of this GUI. Follow the steps carefully and ask in comments if you got into any trouble.

You may also like to read:

You can download this GUI by clicking on the below button, but first read the tutorial completely aand try to pratice it by yourself,don''t just download the run the applicationas it won't give you any help.

Download Simple GUI Project in MATLAB

How to Create a GUI in MATLAB ?

  • First of all, when you will open your MATLAB software then, the first window opened will look like as shown in the image below.This is the simple workspace of MATLAB, now in order to open theGUI toolbar, you have to write "guide" in the workspace as I did below:
  • After writing the "guide" in command window, hit ENTER and a new small window will open up as shown in the below image, from here we will start creating our GUI.
  • As you can see in this small window, there are two tabs, one tab is named as Create New GUI, which has the options for creating your GUI for the first time while the second tab is named as Open Existing GUI, which is used for opening the already designed GUIs and as we haven't designed any GUI yet so we will remain in the first tab and will select blank GUI from the list and hit Enter.
  • Then press "OK" button and as you will complete the action, a new window will immediately open and it will look like as shown in the image given below:
  • This is the place where we are gonna create our GUI. The left side toolbar is showing the controls which we will drag aand drop in the main window and will design our GUI.
  • Let's first have a look at the left side toolbar controls. On the top left side of the bar, the first button is to select 'cursor' . Below curser button we have icon of 'Push Button'. Next to that we have 'side scroll bar'. Then comes 'Radio Button' and 'Check Box'. Then we have most important buttons which are 'Edit text bar' button and 'Static text bar' button. Below are also some other buttons and you can also explore them by simply clicking on them.
Other MATLAB Projects:
  • Now we are going to make a very small and simple interface, in which we will first select a 'button' and then we will select 'Edit text bar' and 'static text bar' and we will make the arrangement in such a way that, when we will press the button then, data will move from Edit text box to Static text box.
  • Now click on the 'button' icon and the next thing which will happen on the window will be like as shown in the image below:
 
  • Now if you want to change the properties of the button, either you want to change its name or you want to change its setting then, simply double click the button and a new window will open, which will be as:
 
  • As you can see in the above image that a new window has been opened and it has a large no of options.
  • To change the name of push button, go to 'string' option and here you can change its name.
  • In above image, you can clearly see that, i have replaced the name 'Push Button' by 'Start'.
  • Now click on the Play icon in the top toolbar which is used to run the GUI. After doing that, a new window will open, which is shown in the below image:
  • This new window in above figure is the back end programming of this GUI created automatically by MATLAB, here we are gonna add all the codes for our ontrols.
  • Now we want to add a static text box and we will select it from tool bar manually.
  • And if you again want to change its name then, we will double click on that. Go to slide option and and write whatever you want to write there.
  • All this process is shown in the below image:
 
  • Now i want to write our official site address, which  is "www.TheEngineeringProjects.com" .
  • And when i will press OK button then our GUI window will look like as shown in the below image:
  • This time, I have not only changed the name of this text box but have also changed the font size and color that's why it is appearing now in light blue color and its font size has also increased. So, now you must have the idea that you can control all the properties and can make it literaly a new thing. The only thing stopping you is your imagination. :)
  • In the same manner we will select edit text box.
  • Now by doing all this, actually i want to write some data in Edit Text Box and when i will press Start button then, data will move from Edit Text Box to Static Text Box.
  • To implement this logic we need to load a function code in 'Start' button. To load the code, right click on the Start button and a new window will open as shown in the image below:
  • As shown in the above image when you will go to the 'view callbacks' option and a next window will open direct to it and then click on the 'call back' button.
  • After that a new window will open which will be representing the code which has been uploaded in the 'Start' button.
  • This window is shown in the below image:
  • Now code has been uploaded and the very next window which will open, will be of 'Edit Text Box' .
  • Here you can write anything which you want to Display in 'Static Text Box'.
  • So in this window, i am writing my tutorials title, which is "How to create a GUI in MATLAB".
  • It can be seen in the below image:
  • When you will press Enter then, immediately an-other button will open which will be representing that our data has been moved to 'Static Text Box'.
  • As you have seen that our Final Display is same. Which means we have moved data from Edit Text Box to Static Text Box.
  • The code added in the button CallBack is as follows:
 x = get(handles.edit1,'String'); %edit1 being Tag of ur edit box if isempty(x) fprintf('Error: Enter Text firstn'); else set(handles.text2,'String',x) end
  • Have a look at this below video in which we have explained in detail How to Create a GUI in MATLAB:
Alright Friends, that was all from today's post and i hope you have learned something new. Don't feel shy to ask anything in comments. Till next tutorial take care !! :)

Relay Control Using 555 Timer in Proteus ISIS

Hello friends, I hope you all are fine and enjoying yourself. Today I am going to share my new project tutorial which is Relay Control Using 555 Timer in Proteus ISIS. We all know about relays that are used for automatic switching and are magnetically connected while electrically insulated. If you don't know much about relays then I think you should first read What is a Relay? in which I have given a detailed overview of relays and where are relays used? After reading this post you will have a good grip over relay and today's post will be piece of cake for you. Relays are mostly used with some microcontrollers like Arduino or PIC Microcontroller. You might also wanna have a look at traffic Signal Control using 555 Timer, which is good if you are interested in learning 555 Timer.

Now in today's project, it can be understood from its name (Relay Control Using 555 Timer in Proteus ISIS), that we are going to operate and control a Relay through 555 Timer. First of all, if we define the relay, then we can say that 'Relay is an Electrical switch which operates Mechanically'. You should also check this Relay Simulation in Proteus to know how it works. Although some relays operate automatically but since we are working on a very basic project and we will be controlling the relay from an external mean and for this, we will use a mechanical switch. The mechanical switch is in fact a button and we can turn it ON or OFF according to our own choice. It is a very simple and easy project and most of its contents have been described in the earlier tutorials. So, I am not going into much detail and without wasting any time, let's move towards the Hardware of the circuit. But it's my personal advice, try to do design this relay control using the 555 timer project yourself and get to know the practical applications of the 555 Timer in person. You can also download the complete simulation of above described tutorial by simply clicking on the button given below:

Download Project Files

Where To Buy?
No.ComponentsDistributorLink To Buy
1555 TimerAmazonBuy Now
2LEDsAmazonBuy Now
3ResistorAmazonBuy Now

Relay Control Using 555 Timer in Proteus ISIS

  • First of all place all the components in your Proteus workspace as shown in the image given below:
  • Now connect supply voltage (+5 volts)  to Vcc pin of 555 Timer.
  • At the output pin of 555 Timer, which is pin # 3, we will connect our load. By load we mean a 5 volts relay and a simple DC motor is connected next to the relay.
  • As I told you earlier that we are using a manual relay, so a simple push Button is also connected between pin # 3 and relay.
  • If you have connected all the electronic components in their exact place, then the final simulation will look like as shown in the image given below:
  • If you notice the image closely, then you will observe that a Diode is also connected in parallel with the relay coil.
  • A Relay contains a coil. When the voltage source is applied across one end of the Relay and the other end is connected to the ground, then the relay gets energized. And when we remove the source voltages then, it still remains energized and the stored charge tends to flow the reverse current.
  • The reason to connect the Diode is that it blocks the reverse current and only allows the forward current to pass through it.
  • Now run the simulation, if the button is kept in the OFF state then, the voltage will appear across the Relay but it will not operate. To run the load, which is Motor, in this case, we will have to turn the switch ON. This can be seen in the image given below:
  • As you can see in the above image, when the switch was in an ON state, the relay gets no signal and doesn't operate. As we move the switch from ON state to OFF state, the relay gets the signal and it starts to operate the load.
  • Now after reading today's post, you must have a look at Relay Interfacing with Microcontroller which is an advanced tutorial and the benefit of a microcontroller is that now you can control your relay any way you want.
  • Other exciting tutorials on 555 Timer include Seven segment Control using 555 timer and Servo Motor Control using 555 Timer.
  • I have created a small video for this tutorial in which I have shown how to do relay control using 555 Timer, I hope you are gonna like it:
Alright, Friends that was all for today's tutorial about relay control using a 555 timer. I hope, I have conveyed something new today. If you have any questions, then don't hesitate to ask in the comments and I will try my best to resolve them. Follow us through email to get the tutorial straight in your inbox. Till the next tutorial, Take care and Be Safe !!! :)

How to use Capacitive Touch Sensor in Proteus ISIS ?

Hello friends, I hope you all are fine and enjoying. Today i am going to share my new project's tutorial which is How to use Capacitive Touch Sensor in Proteus ISIS. It is a very interesting project, and we will be using a 555 Timer while designing this project. If you recall our previous project tutorial which was Angle Control of Servo Motor using 555 Timer in Proteus ISIS, in which 555 timer was generating PWM and was controlling the rotating angle of servo motor.

Now in this project, we have a little different context and now we will be using a 555 Timer in collaboration with Capacitive Touch Sensor. First of all, lets have a little introduction of Capacitive Touch Sensor. Well, if we talk broadly then, in Electrical Engineering Capacitive Touch Sensing is a Technology used in Capacitive Coupling. Capacitive Coupling is a technology which takes Human Body's Capacitance as an input and it measures anything which has a potential difference or  which is conductive or any static object which has a dielectric difference from that of air. While designing this technology, one side of the insulator is coated with the conductive material and a very small voltage is applied to this conductive layer. Now after applying the voltages to the conductive layer, a uniform electrostatic field is formed. After that if any conductor (suppose human finger) will come within the vicinity of this field or it touches the other non coated layer of the insulating material then a capacitor will be dynamically formed and if potential difference between both bodies is HIGH then the current will start to flow. That was a little introduction of Capacitive Touch Sensor, and now lets be practical and move towards the Hardware of the Above described tutorial.

You can download the complete simulation of above described project by simply clicking on the button given below:

Download Simulation Files

How to use Capacitive Touch Sensor in Proteus

  • In this project, we are using 555 Timer in collaboration with Capacitive Touch Sensor. A 555 timer is an 8 pin IC. Pin # 6 is called threshold pin and for 555 timer threshold level is 5 volts.
  • So, 555 timer will trigger above 5 volts and it will generate output which can be collected from pin # 3 represented as ‘Q’ which is output pin of 555 timer.
  • While moving toward the simulation of project, first of all place all the components in the proteus workspace, as shown in the image given below:
  • First of all we have place Capacitive Touch Sensor and after that we have placed a NPN transistor, then 555 Timer will come and at the output of 555 Timer we have added a LED. The complete circuit diagram ready for simulation is shown in the image given below:
  •  As long as the finger is out of the vicinity of the electrostatic field, no potential difference occurs and the LED remains in the OFF state.
  • Now if we move the finger towards Capacitive Touch Sensor, then and when the potential difference reaches up to 0.6 volts, then 555 triggers and it generates output voltages across LED which are 5 volts but in some cases voltages are lost due to series connected resistances. This phenomenon is shown in below image:
  • Now if we further move the finger and take it completely near the sensor, then at this point max potential difference will occur between both point (finger and conductive layer). An important thing to note here is that, we have change the location of our interrupt ( finger) but, same voltages are appearing across LED which are 4.91 volts in this case. It can also seen in the figure given below:
  • Now, if we summarize the whole project, then we have seen that the movement of finger is in fact controlling our output. When the finger was out of vicinity of the sensor, then LED was OFF. When we moved the finger in forward direction and came in the vicinity of Electrostatic field, then Sensor gives signal to 555 Timer and Timer makes LED to glow.
  • Here's a video demonstrating Capacitive Touch Sensor in Proteus ISIS.

Applications Of Capacitive Touch Sensor

Capacitive sensing touchscreens are now a days commonly used in Digital Audio Players, Mobile Phones and Tablet Computers. Capacitive touch sensors also have the ability to replace Mechanical Buttons. Back in 1928 Russians invented a music instrument known as "Theremin" , in which The Instrument Player was able to control the volume and pitch of the sound without physically touching the instrument. Capacitive Touch Sensors are of basic level but they are back bone of large industrial projects and are widely used in designing some other sensors like:

  1. Position sensor.
  2. Humidity sensor.
  3. Fluid or Water level sensor.
  4. Proximity sensor etc..

Alright friends, that’s all for today, I hope I have conveyed some knowledge and helped you people in some way. If you have some queries, then ask in comments. Subscribe us via email to get these tutorials straight in your inbox. Till next tutorial, take care and be safe !!! :)

Seven Segment Display Using 555 Timer in Proteus ISIS

Hello friends, hope you all are fine and enjoying. Yesterday I got a mail from a friend, and he requested me to explain a tutorial about Seven Segment Display. So today, I am going to share my new project tutorial which is Seven Segment Display using 555 Timer in Proteus ISIS. It is a very simple project to understand Modern Digital Electronics.

As you all know, now a days all the Digital Display’s uses Seven Segment Display. So first of all let’s have a little introduction about Seven Segment Display. How they are fabricated and how their LED’s glow in such a beautiful manner? Seven Segment Display (SSD) is the form of electronic device, used to display decimal numbers. Seven Segment Displays are commonly designed in Hexagonal shape but according to our project’s requirement we can also design them in some other shapes like rectangle, triangle, trapezoid etc. Seven Segment Displays may uses LIQUID CRYSTAL DISPLAY (LCD) or LIGHT EMITTING DIODE (LED) for each display segment. In Seven Segment Display all the positive terminals (Anode) or all the negative terminals (Cathode) are brought together to a common pin and such arrangements are known as “Common Anode” or “Common Cathode” arrangement. In this project we will be using Common Cathode arrangement and Hexagonal shape of Seven Segment Display. A simplest form of Seven Segment Display is shown in the image below:

From the above shown image, we can see that we have total 7 LEDs and we will make them glow in such a scheme that the final image will look like a Numerical number. Now if you recall one of our previous project tutorial which was Sequential LED Blinking using 555 Timer, In that project, we are using a 555 Timer in collaboration with a Shift Register. 555 timer continuously provides clock to the Shift Register and Shift Register gives data to its output pins in parallel manner. In today's project, we are also going to use the same concept. We will use a 555 Timer which will continuously provide clock to Shift Register it will enable it's pin accordingly. We can gather this whole information into a single table and also the sequence in which LED's will blink. Such table is called TRUTH TABLE and it is shown in the image given below:

In the above image, '1' means ON state and '0' means OFF state of a particular LED of Seven Segment Display. Above was a little introduction of Seven Segment Display and now, lets move towards Hardware and see How this beautiful display is actually formed.

You can download the complete simulation of above project by simply clicking on the image given below:

Download Seven Segment Display Project Using 555 Timer

Seven Segment Display Using 555 Timer

  • First of all place all the components in your proteus workspace, as shown in the image given below:
  • First of all 555 Timer is installed, after that a Shift Register is added. 555 Timer will give clock to the Shift Register. Since we are using common cathode arrangement. So, the 7 input pin of SSD  are connected to the output pins of Shift Register and the common cathode pin is connected to circuit's main cathode. If you have placed all the components in their exact positions and all the connections are OK. then, the resultant simulation will look like as shown in the image below:
  • Now if you look closely at the upper portion of the image then, you will notice that i have added 2 buttons in the circuit. Left Button in Button # 1 and Right Button is Button # 2.
  • If both the Buttons are kept open and when you will run the simulation then, numerical values will start to come on seven segment display. you can also see it in the below image:
  • Now the switching of button # 1 includes a very interesting feature. First of all play the simulation and Digits will start to run on Seven Segment Display and at any stage when you will press Button # 1 then Seven segment display will vanish but counting will keep on going in the back. And when you will open the Button#1 again then it will show that digit, up-to which counting have reached. Below is a very interesting feature included:
  • During State#1 when Seven Segment Display was showing digit no.2 , we pressed button#1 then, display vanished which can be seen in the state#2. After that when we re-opened the switch#1 then, Seven segment display didn't show the digit no.3 but it shows digit # 8. and this thing can be seen at state#3.
  • Now moving forward, the function of switch # 2 is very simple and easy. During simulation running, when we will press the Button # 2 at any instant then, display will immediately stop at that point. So, we can say that this project can also be used as stop watch and button # 2 controls the stop watch. It can also be seen in the image below:

Seven Segments Displays have a large no of applications. Some of them are listed below:

  1. Digital Clocks.
  2. Electronic Meters.
  3. Basic Calculators.
  4. Electronic Devices to Display Numerical Values. (Generally 14-segments or 16-segments display is used to display full alphanumeric values).

Alright friends, that’s all for today, I hope I have conveyed some knowledge and helped you people in some way. If you have some queries, then ask in comments. Subscribe us via email to get these tutorials straight in your inbox. Till next tutorial, take care and be safe !!! :)

Design a 5V Power Supply in Proteus

Hello friends, hope you all are fine and enjoying in your life. In the previous post, we have seen How to use Oscilloscope in Proteus ISIS, today I am going share a new and a very important Tutorial which is How to Design a 5V Power Supply in Proteus? This project is very simple and of basic level but importance of this project is that it is used as a base in almost all large electronics project, designed now-a-days. When I start working on any project then the first thing, I need to design is this DC power supply, because without powering up the components, we can't use them. :)

While designing a 5V Power Supply in Proteus ISIS, we will be using Voltage Regulator IC, which is commonly known as 7805. This voltage regulator is used to regulate or change the voltage level of supply voltage. As we all know, most of the batteries available in market are of 12 volts. For example, if you have UPS at your homes then check its battery, it will be of 12V. Similarly, the battery of car or motorcycle is also of 12V. So, 12V has become the standard of electrical batteries. Now, we have known that all batteries are of 12V but the problem comes when we are dealing with sensitive electronic components because they are all designed to operate on 5 volts. Now, as I described earlier that, voltage source available is 12 volts and the operating equipment needs 5 volts to operate. So, we need an intermediate source or such type of DC Power Supply, which can convert the source voltage (12 volts) to operating voltage (5 volts). This problem is eliminated by using 7805 IC, and that’s why it is called Voltage Regulating IC.

So dear Friends, today we will design a 5V power supply, which will be able to change Voltage Level and will provide us our desired voltage. But as I always say, that practice makes a man perfect. Try to design it yourself so that, you also get to know the real application of Voltage Regulator IC. So, let's get started with designing of 5V power supply in Proteus ISIS.

How to Design a 5V Power Supply in Proteus

  • You can download the complete simulation of 5V Power Supply in Proteus by clicking the below button:
Design a 5V Power Supply in Proteus

  • Voltage Regulating IC 7805 has 3 pins.
    • Pin # 1 is used as input pin and it is connected to supply voltages. It is marked as (VI). DC +12 volts are applied to this pin.
    • Pin # 2 is called common or ground pin. It is marked as (GND). The whole circuit's common is applied to this pin.
    • Pin # 3 is the output pin of 7805. If 12 volts are applied to its input than it automatically generates 5 volts on this pin. This pin is marked as (VO).
  • Now, moving towards the designing of the hardware, first of all place all the components in Proteus workspace, as shown in image below:
  • In Hardware implementation, first off all apply source voltage (12 volts) to the input pin of 7805 IC. 2 capacitors are also connected in parallel with the source voltage and their ratings are 1000 uf and 100pf respectively.
  • On the other side of IC, we also connect 2 capacitors parallel to the gained output voltage (5 volts), and their ratings are 100pf and 100uf respectively. And a LED is also connected in parallel on the load side.
  • If you have placed all the components in their perfect place and all the connections are OK, then the resultant proteus simulation will look like as shown in the below image:
  • Now if you closely observe the above image then you will notice that Capacitors connected across the 12 volts are of HIGH rating while the Capacitors connected across LED are of LOW rating. The purpose of applying capacitors is to remove noise from our DC voltages. As, we all know that DC voltage source available in market is not that much pure. So, to get pure DC wave Capacitors are connected across it.
  • Now when you will run the final simulation then it will look like, as shown in the image given below:
  • As you can see that when i ran the simulation, the LED started to glow. Now here is an important thing to note that i have applied a resistance in series with LED. The value of resistance is very low, and very low voltages appear across this resistor. This resistor limits the current and if we directly connect the LED then, their will be chances that the LED may burn out.
  • We can justify it as: From ohms law : V=IR, and by rearranging it, we get : I=V/R .
  • Now if we remove resistor then R=0, which means: I=V/0 and it lead us to conclude that: I= infinity or maximum in this case. So the only purpose of the resistor is to limit current.

Alright friends, that’s all for today, I hope now you can design a 5V power supply quite easily in Proteus. If you have some queries, then ask in comments. Subscribe us via email to get these tutorials straight in your inbox. In the next tutorial, I have discussed Variable Voltage Modulation using LM317 in Proteus ISIS.

 

LED Blinking using 555 Timer

Hello friends, hope you all are fine and having fun. Today I am going to share my new tutorial which is Sequential LED Blinking Using 555 Timer in Proteus ISIS. If you recall our one of previous tutorials, which was ‘Multiple LED Flashing Project Using 555 Timer in Proteus ISIS’, but in today’s tutorial we are going to take the same concept to a next level and we are going to make the LEDs blink in either ascending or descending order.

It is a very simple tutorial like the previous one, but the only change is, in this project we have added a Shift Register (4017) next to 555 Timer. 4017 is a Serial IN Parallel OUT Shift Register, which means, at input port it takes data in Serial manner and at output port it will give data in Parallel manner. All types of register needs a clock pulse to operate and this clock is provided by Timers or Micro controllers. In this project we will be using 555 Timer to generate clock pulse. 555 Times gives clock pulse at pin # 3 abbreviated as ‘Q’ pin. And this clock pulse is given at pin # 14 of Shift Register abbreviated as ‘CLK’ pin. Shift Register (4017) has total 15 pins. 2 input pins, 10 output pins. Input data is given at pin # 13, which is called ‘Enable’ pin and register shifts the data sequentially at its output pins. Shift register has 10 output pins which means it is a 10-bit shift register, which means it executes 10-bit data simultaneously. Now dear friends, let’s move towards the hardware of the project but as you know, practice makes a man perfect. Try to do it with your own hand so that, you get to know the practical applications of electrical components in person.

Dear friends, you can also Download the complete simulation of the Sequential LED Blinking Project using 555 Timer, by pressing on the button given below. So, let's get started with Sequential LED Blinking using 555 Timer in Proteus ISIS.

Download Sequential LED Blinking Project Using 555 Timer

Sequential LED Blinking using 555 Timer in Proteus ISIS

  • Weare gonna design a Project named LED Blinking using 555 Timer so let's first have a look at its block diagram.

  • Threshold voltage for 555 Timer is 5 volts, and when voltages exceeds this level, 555 timer triggers and it generates a output pulse at its output pin which is ‘Q’ pin.

  • While designing the circuit, First of all 555 Timer will come, secondly Shift Register (4017) will be connected with it and at the end we will plug LED's. The complete circuit flow diagram is shown in figure below:

  • Now coming towards the designing of the project, first of all, place the components in your Proteus workspace, as shown below in image:
  • Now Output pulse from 555 Timer is connected to input ‘CLK’ pin of Shift Register.
  • Since the register being used is 10-bit, and its outputs are Q0~Q9. The pins Q0~Q5 are connected to LED's D6~D1 respectively.
  • After that Register output pin Q6 is also connected to LED (D2) and it becomes parallel with Q4. Now LED, (D2) has 2 parallel inputs and it becomes HIGH (turns ON) if any of the two Inputs is HIGH.
  • Next we connect the Register output pin Q7 to LED (D3) and then it becomes in parallel with Q3. After doing that LED, (D3) has 2 parallel inputs and it becomes HIGH, if any of the 2 inputs is HIGH.
  • After doing that, now we connect register’s output pin (Q8) to LED (D4) and then it also becomes in parallel with Q2, and LED will start glowing if any of the 2 inputs will be HIGH.
  • Now at the end, we connect Q9 to LED (D5), and then it becomes in parallel with Q1. Now D5 has 2 inputs (Q9 &Q1) and LED will glow if any of the 2 inputs will be HIGH.
  • Now at the end, If you have connected all the components in exact order, and all the connections are OK then, the exact simulation will look like as shown below:
  • Now if we run the Proteus simulation and observe it closely, then we will see that, 555 Timer is continuously generating PWM and the Shift Register set’s its output ports HIGH from Q0~Q9 respectively.
  • First of all Register’s output pin # Q0 becomes HIGH and it send signal to LED (D6) and LED will start glowing. You can also observe this phenomenon in the image given below:
  • Then pin # Q1 becomes HIGH and it send signal to LED (D5) and D5 starts glowing. This can be observed in the figure given below:
  • Then register's output pin Q2 becomes HIGH and sends signal to LED (D4) and D4 starts glowing. This can also be observed in the figure given below:
  • Then Register's output pin Q3 becomes HIGH and send signal to LED (D3) and this LED starts glowing. This stage can be seen in the figure given below:
  • Then Register's pin Q4 becomes HIGH and sends signal to LED (D2) and this LED (D2) starts glowing. This process is shown in the image given below:
  • And in the next step, Register gets its pin # Q5 HIGH and send signal to LED (D1) starts to glow. This process can be seen in this figure:
  • This process keeps on going and when the Register;s next pin becomes HIGH, which is Q6, then it again sends signal to LED (D2) and it starts to glow, and so D3,D4,D5 will glow respectively, and this sequence of LED's blinking will continue, until you stop it manually or by yourself.
  • In the beginning, when LED's Started to blink from Left to Right which was (D6 to D1) , this sequence is called Forward Sequence.
  • After that, LED's started to blink from Right to Left which was (D1 to D6), this sequence is called Reverse or Backward Sequence.
  • We can summarize this whole sequence into a tabular shape, and this table is given in the figure below:
  • This process keeps on going and LED's keeps on glowing in a beautiful sequence. These type of projects are generally used for decoration purposes.

  • So, that's all about Sequential LED Blinking Using 555 timer.

Alright friends, that's all from this post. I hope now you can easily design LED Blinking using 555 timer Project. In the coming tutorials, we will discuss something new regarding 555 Timer applications. Until than, Take Care and Be Safe !!! :)

Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir