Design of a Load Cell

Hi Friends! Hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the details on the design of a load cell. Strain gauge load cells are widely used in various applications. They work on the principle of varying electrical resistance with elastic deformation in the conductor. The strain gauge comprises thin wires which are affected by a change in environment. Expansion or contraction in a strain gauge occurs with varying temperatures which results in creating noise and lack of accuracy in measurement. The life of the device may also be affected due to corrosion that may occur in the elastic element. In addition to the possible deterioration, the load cell itself may cause safety issues with regard to the environment. For example, in a refinery or chemical industry, the ignition of flammable liquids or gases may occur due to the use of load cells. Therefore, they must be designed accordingly.

        Hermetically Sealed

Hermetically sealed load cells provide the best protection to the environment. The load cell is sealed by welding, using epoxy or glass-to-metal bonding. Pressurized inert gas is filled inside the cell. These load cells are standardized by Ingress Protection (IP) rating as air and watertight.

        Open

These are designed in normal indoor conditions or special outdoor environments. Soft resin or rubber covering is used for environmental protection in this type of load cell. However, the strain gauge becomes vulnerable to moisture and change in temperature due to this type of protection.

        Explosion-proof

As the name suggests, this type of load cell protects from any explosion that may occur within the device. If the internal cavities in a device or equipment are exposed to gases, these gases, once filled in the cavity, will lead to a potential explosion. An explosion-proof load cell is highly suitable for such conditions. Their rating is achieved by combining confinement, limitation of energy, and segregation. Other factors to consider when designing a load cell are:
  •         The maximum weight that a load cell can measure is called Rated Capacity or rated load. Therefore, the load cell rated load must be greater than the weight to be measured in a system.
  •         Overload Rating (Safe) is the maximum load that can be exerted on a load cell without causing plastic deformation while measuring the weight of an element.
  •         Overload Rating (Ultimate) is the maximum load that can be exerted on the load cell without causing a fracture to the load cell.
  •         Rated Output is the ratio of the electric output signal and the strength of the excitation voltage expressed in mV/V.
  •         Zero Balance is the electric output signal with rated excitation voltage at no-load condition.
  •         Excitation Voltage is the voltage for excitation transferred to the circuit.
  •         Non-linearity defines the deviation of the calibration curve of the load cell from a straight line. It starts from zero loads up to the maximum capacity of the cell.
  •         Hysteresis is defined as the difference in the cycle a load cell follows while increasing the load from zero to maximum and then decreasing it from maximum to zero.
  •         Combined Error is calculated by measuring non-linear and hysteresis effects in combination.
  •         Repeatability is the measure of the difference between readings of repeated loads under the same loading conditions.
  •         Temperature Effect on Rated Output is the change in readings due to a change in temperature.
  •         Temperature Effect on Zero is the change in the zero-reading due to a change in temperature.
  •         Input and Output Resistance is the resistance of the circuit measured at the input and output respectively.
  •         Insulation Resistance is the measured resistance between the circuit and housing of the load cell.
That’s all for today. I hope you’ve enjoyed reading this article. If you have any questions, you can ask me in the section below. Thank you for reading the article.

TDA2005 Amplifier Datasheet, Pinout, Features & Applications

Hi Everyone! Hope you’re well today. Happy to see you around. In this post today, I’ll walk you through the Introduction to TDA2005.

TDA2005 is a 20-watt Class B dual audio amplifier integrated chip. It comes in a Multiwatt11 package and is carefully designed for car radio applications. It can support the current up to 3.5A which is quite high which makes it a suitable pick for constructing power booster amplifiers.

I suggest you read this post all the way through as I’ll detail the complete Introduction to TDA2005 covering datasheet, pinout, features, and applications. Let’s jump right in.

Introduction to TDA2005

  • TDA2005 is a 20-watt Class B dual audio amplifier integrated chip. It is particularly designed for car radio applications.

  • It comes with a high current capability and features a total of 11 pins on board.
  • It supports low impedance loads of around 1.6 with an output power of more than 20 W.
  • TDA2005 features a bridge or stereo setup and the total power dissipation is 30W.
  • This device is mainly employed in applications where high-output audio power amplification is required.
  • Incorporated with protection against load dump voltage surge, this device features a maximum supply voltage of around +28V.
  • The repetitive current through each output is 3.5A while the maximum non-repetitive peak current through each output is 4.5A.
  • The storage temperature range is -40°C to 150°C while the operating temperature range is -23°C to 130°C.
  • This chip employed in stereo amplification applications will exhibit a voltage gain of 51 dB.

TDA2005 Datasheet

Before you apply this device to your electrical project, it’s wise to go through the datasheet of the component that features the main characteristics of the device. You can download the datasheet of TDA2005 by clicking the link mentioned below.

TDA2005 Pinout

The TDA2005 is an 11-pin device. The following figure represents the pinout diagram of TDA2005. The following table shows the pin name and pin description of TDA2005.
Pin Description of TDA2005
Pin No. Pin Description Pin Name
1 Non-Inverting Input of amplifier 1 INPUT+(1)
2 Inverting Input of amplifier 1 INPUT-(1)
3 Supply Voltage Rejection Ratio SVRR
4 Inverting Input of amplifier 2 INPUT-(2)
5 Non-Inverting Input of amplifier 2 INPUT+(2)
6 The ground is connected to this pin GND
7 Amplifier 2 bootstrap capacitor BOOTSTRAP(2)
8 The output of amplifier 2 OUTPUT(2)
9 Positive Power Supply +VS
10 The output of amplifier 1 OUTPUT(1)
11 Amplifier 1 bootstrap capacitor BOOTSTRAP(1)

TDA2005 Features

  • Overheat protection and output short circuit protection
  • A few components required to put the amplifier in working condition
  • Operating voltage range = +8 to +18V
  • High output power - Po=10 + 10 W @ RL = 2 ?, Po = 20 W @ RL = 4 ?
  • Programmable gain and bandwidth
  • Peak supply voltage = +40V for 50ms
  • Loudspeaker protection against short circuit
  • Incorporated with protection against load dump voltage surge
  • Supply voltage Max. = +28V
  • Comes with protection against fortuitous open ground
  • Total power dissipation = 30W
  • Comes with Bridge or Stereo setup
  • Repetitive current through each output = 3.5A
  • The non-repetitive peak current through each output Max. = 4.5A
  • Storage temperature range = -40°C  to 150°C
  • Operating temperature range = -23°C  to 130°C

TDA2005 Applications

The TDA2005 is used in the following applications.
  • Employed in Car radio
  • Used in Microphone amplifiers
  • Used in audio power amplifiers
  • Incorporated in Woofer amplifiers
  • Used in Music players

That’s all for today. Hope you found this article helpful. If you have any questions, you can pop your comment in the section below. I’d love to help you the best way I can. Feel free to share your valuable suggestions around the content we share so we keep creating quality content customized to your exact needs and requirements. Thank you for reading the article.

ESP32 Pinout, Datasheet, Features & Applications

Hi Guys! I hope you’re doing great. Today, I am going to share Chapter Zero of the ESP32 Programming Course. I have called it Chapter 0 because today, we won't practically work on the ESP32. Instead, I’ll walk you through the detailed theoretical Introduction to the ESP32 Module, where we will discuss the ESP32 Pinout, Datasheet, Specifications, Features, Applications etc. in detail.

ESP32 is an embedded module that supports both WiFi and BT(dual-mode) connectivity and is thus used in Cloud-based IoT projects. ESP32 is the upgraded model of the ESP8266 module and is designed by Espressif Systems in China.

The following tables show the main features and technical specifications of the ESP32 module.

ESP32 Technical Specifications
No. Parameter Name Parameter Value
1
Microprocessor Tensilica Xtensa single-/dual-core 32-bit LX6 microprocessor(s)
2
CoreMark® score 1 core at 240 MHz: 504.85 CoreMark; 2.10 CoreMark/MHz
2 cores at 240 MHz: 994.26 CoreMark; 4.14 CoreMark/MHz
3 Operating Voltage 3.3V
4
DC Current on 3.3V Pin 50 mA
5
DC Current on I/O Pins 40 mA
6
Maximum Operating Frequency 240MHz
7
Frequency Oscillators 8MHz (Internal Oscillator)
Internal RC Oscillatoror
2MHz ~ 60MHz External Crystal Oscillator(40MHz required for WiFi/BT)
32kHz External Crystal Oscillator(For RTC)
8
Timers 2 x 64-bit Timers, 1 RTC Timer,

ESP32 Pinout
1
DAC
2 Channels (8-bit, digital to analog converter)
2
ADC 18 Channels (12-bit, analog to digital converter)
3
Capacitive Touch Sensors
10
4
LED PWM
16 Channels

ESP32 Communication Protocols
1
Wi-Fi 802.11 b/g/n (Speed upto 150Mbps)
2
Bluetooth Supports Classic Bluetooth v4.2 BR/EDR & Bluetooth Low Energy(BLE)
3
Bluetooth Low Energy Supports BLE
4
UART Protocol 3 Channels
5
SPI Protocol 4 Channels
6
I2C Protocol 2 Channels
7
I2S Protocol 2 Channels (for digital audio)
8 CAN Protocol 1 Channels

ESP32 Builtin Memory
No. Parameter Name Parameter Value
1 SRAM 520kb
2 ROM(Flash Memory) 448kb
3 RTC SRAM
16kb

So, let's get started with the Introduction to ESP32:

Where To Buy?
No.ComponentsDistributorLink To Buy
1ESP32AmazonBuy Now

Introduction to ESP32 Module

  • ESP32 (designed by Espressif Systems, a Shanghai-based Chinese Company) is a 48 Pin microprocessor-based embedded IC(available in QFN package), that supports both WiFi & BT(dual-mode) connectivity and is used majorly in wearable devices, mobile & cloud-based IoT applications.
  • The microprocessor used in the ESP32 chip is the Tensilica Xtensa LX6 microprocessor (single-core and dual-core).
  • A few LX6 based ESP32 ICs are:
    • ESP32-D0WDQ6 (and ESP32-D0WD)
    • ESP32-D2WD
    • ESP32-S0WD
    • ESP32-PICO-D4

ESP32 vs ESP8266

  • Both the ESP32 and ESP8266 are inexpensive WiFi modules with low power consumption.
  • Both modules are desirable for DIY projects in the areas of IoT (Internet of Things) and automation.
  • The ESP32 is a dual-core 160Mhz 240Mhz CPU, while the ESP8266 has an 80Mhz single-core processor. Therefore, if your primary concern is processor speed, you should prioritize the ESP32 over the ESP8266.
  • The ESP32 offers more GPIO than the ESP8266.
  • ESP32 supports Bluetooth 4.2 and BLE(Bluetooth Low Energy).
  • The ESP32 offers a 12-bit ADC, while the ESP8266 offers only a 10-bit ADC.

ESP32-WROOM-32

  • ESP32-WROOM-32 is a 38-pin breakout board of ESP32, which is most commonly used in third-party ESP32 modules.
  • As ESP32 IC is available in the QFN(Quad Flat No Leads) package, so it's quite difficult to solder the IC in embedded projects.
  • So, to ease the process of using ESP32 IC, Espressif Systems designed numerous small modules(using ESP32 chip) that have a built-in antenna and easily usable pinout.
  • Other ESP32 modules are ESP32-SOLO and ESP32-WROVER.
  • One of the most commonly used breakout boards of ESP32 is ESP32-WROOM-32, shown in the below figure:

Third-Party ESP32 Development Modules

  • Many embedded companies have used ESP32-WROOM-32 and designed different ESP32 development boards, which are plug-and-play modules and are thus normally used for learning and prototyping purposes.
  • One of the most commonly used ESP32 development boards is called ESP32-DevkitC.
  • ESP32-DevKitC is a 30-pin ESP32-based development board, designed by Espressif Systems and is used in embedded and IoT projects.

  • All you need to do is plug this device using a USB cable and play with it on the fly.
  • Boot mode and Reset buttons are incorporated on the board.
  • USB micro connector and USB-UART Bridge, and LDO regulator are also included in the device.

Types of ESP32 Development Boards

  • The following are the five different versions of ESP32-DevKitC.
    1. ESP32-DevKitC-32E
    2. ESP32-DevKitC-32UE
    3. ESP32-DevKitCVE
    4. ESP32-DevKitCVIE
    5. ESP32-DevKitCS1

So, that was the evolution of ESP32 from a simple IC to plug & play board. Now let's have a look at the Pinout of the ESP32 microcontroller and modules:

ESP32 Pinout

We have seen above that ESP32 has evolved first into ESP32-WROOM-32 and is further upgraded into ESP32-DevKitC. So, let's have a look at the pinout of all these boards, one by one:

Pinout of ESP32 IC

  • ESP32 IC in its pure form consists of 48 pins in total.
  • The following figure shows the labeled ESP32 Pinout diagram:

Pinout of ESP32-WROOM-32

  • ESP32-WROOM-32 is a breakout board of ESP32 and consists of 38 pins in total.
  • Here's the pinout of the ESP-WROOM-32 board:

Pinout of ESP32-DevkitC

  • ESP32-DevKitC is a development board based on the ESP32 microcontroller and it has 36 pins in total.
  • Here's the pinout diagram of ESP32 DevKitC:

ESP32 Pin Description

Now, let's have a look at the functions of ESP32 Pinout:

Power Pins in ESP32

  • Power: Power is applied through Micro-USB, 3.3V pin, 5V pin, and GND. Regulated 5V is supplied to this pin which is further regulated to 3.3V to power up the board. And 3.3V pin directly supplies the 3.3V regulated to the board. And the ground is connected to GND.
  • Enable: The enable pin is represented by ‘En’ on the board and is used to reset the microcontroller.
  • AREF: It is marked as AREF which is used to provide a reference voltage for input voltage.

GPIO Pins in ESP32

ESP32 has 36 GPIO(general purpose input/output) pins to perform numerous operations(normally one at a time). Third-party ESP32 modules have different numbers of GPIO pins i.e. ESP32 Dev Kit V1 includes 30 GPIO pins. Let's have a look at the functionality of ESP32 GPIO Pins:

ADC Pins in ESP32

  • ADC Pins: ESP32 has a total of 18 ADC channels(12-bit each) used to measure the analog voltage within the range of 0-3.3V.

ESP32 is equipped with two SAR analog-to-digital converter modules named ADC1 and ADC2. ADC1 has 10 Channels labeled from ADC2_1 to ADC2_7, while ADC2 has 10 Channels labeled from ADC2_0 to ADC2_9. The ADC output value ranges from 0 to 4093 at 12-bit resolution.

DAC Pins in ESP32

  • DAC Pins: ESP32 features 2 distinct 8-bit digital-to-analog converters(DAC1 and DAC2) for translating digital values to analog signals. The DAC function is attached to below two GPIO pins:
  1. DAC1-GPIO25
  2. DAC2-GPIO26

The DAC employs a power supply as an input reference voltage and features an internal resistance network.

PWM Pins in ESP32

  • PWM Pins: ESP32's PWM controller has 16 independent PWM channels with configurable frequency and duty cycles. Any GPIO pin can be used as a PWM pin.

PWM pulses are used to control the speed of motors or the brightness of LEDs. You can configure the frequency, channel, GPIO pin, and duty cycle of the PWM signal.

SPI Pins in ESP32

  • SPI Pins: ESP32 has three SPI blocks that operate in both master and slave modes, named SPI, HSPI, and VSPI.

Among these 3 blocks, SPI is used as an interface to flash memory. So, we are left with HSPI and VSPI for normal use:

  1. VSPI: ESP32 VSPI Pins are GPIO23 (MOSI), GPIO19 (MISO), GPIO18 (CLK) and GPIO5 (CS) used for SPI-1 communication.
  2. HSPI: ESP32 HSPI Pins are GPIO13 (MOSI), GPIO12 (MISO), GPIO14 (CLK) and GPIO15 (CS) used for SPI-2 communication.

I2C Pins in ESP32

The ESP32 has two I2C interfaces. The SCL and SDA pins of both I2C interfaces can be assigned by a user in the program. The default I2C pins are:

  • SDA-GPIO21
  • SCL-GPIO22

ESP32 Capacitive Touch Sensors

  • ESP32 has 10 capacitive touch-sensing GPIO Pins(T0 to T9), which get electrostatically charged when a finger touches the respective GPIO pin.

Without any additional hardware, these touch GPIOs can be utilized to make capacitive touchpads. Variations in capacitance are evident.

RTC GPIO

  • ESP32 has 18 Low-Power RTC GPIO Pins(RTCIO0 to RTCIO17) used to wake up the ESP32 board from deep sleep mode.

  • Serial: Two serial pins are represented on boards as Tx and Rx. The Tx is used to transmit serial data while Rx is used to receive serial data.

  • External Interrupts: All GPIO pins can be used as external interrupts.

ESP32 Datasheet

Before you incorporate this device into your electrical project, it’s wise to go through the datasheet of the component that features the main characteristics of the device. You can click the link given below to download the ESP32 datasheet.

Now, let's have a look at the features of ESP32:

ESP32 Features

Here are the main features of ESP32 IC:

  • ESP32 has built-in integration of both WiFi and Bluetooth dual-mode.
  • ESP32 has 34 programmable GPIOs present on the chip.
  • ADC is of 12-bit SAR and can support up to 18 channels.
  • DAC is 8-bit and it has 2 DAC channels.
  • ESP32 also has 10 touch sensors embedded in it.
  • ESP32 also has a Hall sensor in it.
  • It supports 4 SPI channels.
  • It also has 2 I²S channels.
  • ESP32 has 2 I²C ports in it.
  • It supports 3 UART channels.
  • It also has 1 host(SD/MMC/SDIO) and 1 slave(SDIO/SPI).
  • ESP32 also supports the Ethernet MAC interface with dedicated DMA and IEEE 1588 support.
  • It supports Two-Wire Automotive Interface (TWAI®, compatible with ISO11898-1)
  • LED PWM up to 16 channels

A few of ESP32's key features are discussed below in detail:

ESP32 WiFi Key Features

  • Wireless Networking Standard: 802.11 b/g/n
  • Wireless Standard: 802.11 n (2.4 GHz), up to 150 Mbps
  • WiFi Multimedia(WMM)
  • WiFi Aggregation: TX/RX A-MPDU, RX A-MSDU
  • Immediate Block ACK: suitable for high bandwidth & low latency traffic.
  • Automatic Beacon monitoring (hardware TSF)
  • Simultaneous support for SoftAP, Infrastructure Station and Promiscuous modes.
  • Diverse Antenna
  • Defragmentation to smoothen the data.
  • Supports 4 virtual WiFi Interfaces.

ESP32 Bluetooth Key Features

  • Compliant with Bluetooth v4.2 BR/EDR
  • Class-1, Class-2 and Class-3 transmitters without external power amplifier
  • Increased Power Control
  • Transmission Power: +12 dBm
  • BLE sensitivity: –94 dBm (NZIF receiver)
  • Adaptive Frequency Hopping (AFH)
  • Standard HCI supports SDIO/SPI/UART
  • High-speed UART HCI, up to 4 Mbps
  • Bluetooth 4.2 BR/EDR BLE dual-mode controller
  • CVSD and SBC for audio codec
  • Classic BT and BLE support Multiple connections.
  • It can advertise and scan simultaneously.
  • Bluetooth Piconet and Scatternet

ESP32 Microcontroller Key Features

  • ESP32 uses an Xtensa® single-/dual-core 32-bit LX6 microprocessor(s) .
  • It supports data rates up to 600 MIPS (200 MIPS for ESP32-S0WD/ESP32-U4WDH)
  • It has a Flash Memory of 448 KB.
  • It has an SRAM memory of 520 KB.
  • 16 KB SRAM in RTC
  • QSPI supports multiple flash/SRAM chips.

ESP32 Clocks & Timers Key Features

  • ESP32 has a calibrated 8MHz crystal oscillator (internal)
  • Calibrated RC oscillator (internal)
  • External 2 MHz ~ 60 MHz crystal oscillator (40 MHz only for Wi-Fi/BT functionality)
  • External 32 kHz crystal oscillator for RTC with calibration
  • Two timer groups, including 2 × 64-bit timers and 1 × main watchdog in each group
  • ESP32 also has one RTC timer.
  • RTC watchdog is also present in ESP32.

ESP32 Projects & Applications

ESP32 modules have brought a revolution in embedded and especially IoT projects. As these boards are small-sized, low-powered and support both WiFi & BT, thus are gaining popularity in IoT-based handheld devices. A few applications of the ESP32 module are as follows:

  • Used in Network projects.
  • Employed for beginner-level DIY projects.
  • Employed in the prototyping of IoT devices.
  • Used in cloud-based smart security projects.
  • Used in low-power battery-operated applications.

That was all about the Introduction to ESP32 module. If you have any questions, you can approach me in the comment section below. I’ll help you according to the best of my expertise. You’re most welcome to share your valuable feedback and suggestions around the content we share so we keep coming up with quality content customized to your exact needs and requirements. Thank you for reading the article.

Introduction to Arduino Beetle

Hi Friends! Hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the Introduction to Arduino Beetle. Arduino beetle is the smallest Arduino board that comes with the functionality of Arduino Leonardo. This board is a remarkable addition to the minimalistic Arduino technology. It is based on the microcontroller Atmel Atmega32u4. With the inception of innovations in modern technology, electronic devices are becoming light, more compact that happen to perform a lot of functions. These devices are economical and require little to no prior knowledge to get your hands dirty with them. All Arduino boards are microcontrollers but not all microcontrollers are Arduino board. While using the Arduino board, you don’t need to attach extra peripherals with the board, as it comes with built-in functions that don’t require the addition of external components. Earlier we have shared the articles on scores of Arduino boards including Arduino Uno, Arduino Leonardo, Arduino Due, and Arduino Mega. You can check these articles to find the basic information about them. I suggest you buckle up, as I’ll walk you through the complete introduction to Arduino Beetle covering datasheet, pinout, pin configuration, features, communication and programming and applications. Let’s jump right in.

Introduction to Arduino Beetle

  • Introduced by Arduino.cc, Arduino Beetle is the smallest Arduino Leonardo board that is based on Atmel Atmega32u4.
  • The Atmega32u4 is an 8-bit CMOS low power microcontroller
  • Arduino.cc offers an open-source platform for everyone which means you can optimize the boards and software programs as you like better.
  • The IDE (integrated development environment) is a software used to program the Arduino board. You don’t require prior knowledge and technical skills to start working with this board. The C and C++ are the languages used to program the Arduino beetle.
  • Though IDE software is compatible with MAC, Windows, or Linux Systems, Windows is a preferable operating system to use this board.
  • This tiny device comes with a micro USB port which means you can directly connect the device with the computer and program it based on your needs and requirements.
  • You don’t need a separate burner to burn and run the program on the board as it comes with a pre-burned Bootloader that allows you to upload the code in the hex file of the board.
  • The beetle is mainly introduced to provide the solution for low-cost disposable projects including DIY, gift projects, student projects, and e-textile.
  • This device operates at 5V and it also functions at 3.7V. Make sure voltage doesn’t exceed 5V else it can damage the device.
  • It comes with a clock time 16MHz. Several pins are incorporated on board out of which 10 are digital pins, 4 are PWM pins and 5 are analog pins.
  • This module comes with a crystal oscillator frequency up to 16 MHz that is mainly used to produce the clock pulses with decent speed. This oscillator is required for the synchronization of all the internal operations.
  • This module supports different communication protocols including I2C and UART.
  • The flash memory is 32KB out of which 4KB is used by the Bootloader. It is the memory where the sketch (the program we create on IDE is called a sketch) is stored.
  • The SRAM memory is 2.5KB which is the memory where sketch manipulates and produces variables when it operates. And EEPROM memory is 1KB and it is the space used for storing long-term information.
  • The price of this board at the time of writing this article is around 8$ which carries all powerful functions like Arduino Leonardo.

Arduino Beetle Datasheet

Before you incorporate this device into your electrical project, it’s wise to go through the datasheet of the device that features the main characteristics of the board. Click the link below to download the datasheet of Arduino beetle.

Arduino Beetle Features and Specifications

The following are the main features and specifications of Arduino beetle.
  • Board size 20mm x 22mm.
  • Direct testing and uploading program through a micro USB port.
  • I/O ports are V-shaped gold plated.
  • Two power interfaces that are gold plated and are used to supply power to the board.
  • Blue Light blink indicator which indicates the operation of the board.
  • Incorporated with Atmel Atmega32u4 microcontroller.
  • The operating voltage is 5V and the clock speed is 16MHz.
  • There are 5 analog pins, 4 PWM pins, and 10 digital pins on board.
  • Micro USB = 1
  • UART = 1
  • I2C = 1
  • EEPROM = 1KB
  • SRAM = 2.5 KB
  • Flash Memory = 32KB out of which 4KB is used by the Bootloader.
  • Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
  • Data retention: 20 years at 85°C/ 100 years at 25°C

Arduino Beetle Pin Configuration

Still, reading? Perfect. I hope you’ve got a clear idea about this board. In this section, we’ll cover the pin description of the pins incorporated on the board.

Analog Pins

There are 5 analog pins incorporated on the board. These pins can receive any number of values in contrast to digital pins which receive only two values HIGH and LOW.

PWM Pins

This board doesn’t incorporate DAC (digital to analog converter) but it does incorporate 4 PWM pins which are used to get some of the analog output’s functions. During this PWM (pulse width modulation) process, the board generates analog results with digital means.

Digital Pins

There are total 10 digital pins incorporated on board. These pins are developed to be configured as outputs or inputs based on the requirement. These pins are either ON or OFF. When they are ON they are in HIGH voltage state getting 5V and when they are OFF they are in LOW voltage state getting 0V.

Atmega32u4 Pinout

The following figure shows the pinout diagram of Atmega32u4.

Atmega32u4 Pin Description

In this section, we’ll cover the pin description of each pin incorporated on Atmega32u4.

Vcc

It is a digital voltage supply pin.

GND

This pin is connected to the ground.

Port B (PB7...PB0)

Port B is an 8-bit bidirectional I/O port that is incorporated with pull-up resistors. These resistors are used to limit the current and prevent it exceeding from a certain number. This port comes with efficient driving capabilities compared to other ports. When this port is used as an input, this will source current due to the port pins that are extremely pulled low. This happens when the pull-up resistors are activated.

Port C (PC6, PC7)

Port C is similar to Port B - an 8-bit bidirectional I/O port incorporated with pull-up resistors. When the pull up resistors are activated, Port C will source current with port pins extremely pulled low.

Port D (PD7..PD0)

Port D is an 8-bit bidirectional I/O port that comes with pull-up resistors. When the reset condition meets, the Port D pins are tri-stated.

Port E (PE6, PE2)

Only two bits... PE6 and PE2 are present on the device pinout. It is an 8-bit bidirectional port incorporated with internal pull-up resistors.

Port F (PF7..PF4, PF1,PF0)

Port F is a bidirectional port that acts like analog inputs to the A/D converter. Two bits PF2 and PF3 are not present on the product pinout.

D-

USB Full speed / Low Speed Negative Data Upstream Port. It should be attached to the USB D- connector pin along with the serial resistor 22W.

D+

USB Full speed / Low Speed Positive Data Upstream Port. It is connected to the USB D+ connector pin along with the serial resistor 22W.

UGND

USB pads ground.

UVCC

Regulator Input supply voltage applied to USB pads.

UCAP

Internal Regulator Output supply voltage applied to USB pads.

VBUS

USB VBUS monitor input.

RESET

This is a reset pin. A low level applied to this pin for a longer time will produce a reset. Shorter pulses may not generate a reset.

XTAL1

Input to the internal clock operating circuit and Input to the inverting Oscillator amplifier.

XTAL2

Output from the inverting Oscillator amplifier.

AREF

This is used as the analog reference pin for the A/D Converter.

AVCC

AVCC is the supply voltage pin for all the A/D Converter channels.

Communication and Programming

  • Recall, this module supports different communication protocols i.e. I2C, and UART.
  • The I2C is a two-wire communication protocol that carries two main lines called SCL and SDA. The former is a serial clock line required for the synchronization of all data transfer over the I2C bus. While the latter is a serial data line mainly employed to carry the data.
  • And the UART is mainly used for serial communication and comes with two lines Tx and Rx where the former is used to transfer the serial data and the latter is used to receive the serial data.
Arduino IDE software is used to program all types of Arduino Boards. Attach micro USB to the Beetle and select Arduino Leonardo from your board type on the Arduino IDE software.

Arduino Beetle Applications

This tiny little beast is a full system in a small package as it incorporates almost all functions like Arduino Leonardo. The following are some applications of Arduino Beetle.
  • Health and security systems
  • Creating a wireless keyboard
  • Industrial automation
  • Embedded systems
  • Student projects
  • Automatic pill dispenser
  • Water level meter.
You’ll find a lot of microcontrollers in the market that are more economical than the Arduino board. But still, most of the hobbyists and students prefer Arduino Board over microcontroller. The reason is clear. Arduino board comes with a big community that shares expertise and knowledge for a wide range of audiences. Help is readily available that you’ll never find in the case of microcontrollers. Moreover, when you select Arduino board over microcontroller, you don’t need additional components and extra peripherals to connect with the board, as this board comes with a lot of built-in functions, setting you free from the hassle of connecting a lot of components. Simply, you need to plug the device with the computer and play with it on the fly. That’s all for today. I hope you’ve enjoyed reading this article. If you’re unsure or have any questions, you can pop your comment in the section below, I’d love to help you the best way I can. Feel free to share your valuable suggestions and feedback around the content we share so we keep coming up with quality content customized to your exact needs and requirements. Thank you for reading the article.

LM747 Datasheet, Pinout, Features, Equivalent & Applications

Hi Guys! I hope you’re well today. Happy to see you around. In this post today, I’ll walk you through the Introduction to LM747.

LM747 is a general-purpose dual-operational amplifier IC. This chip contains two operational amplifiers on board and belongs to the LM’xx’ family where LM stands for linear monolithic. In this chip, analog components are incorporated into silicon.

I suggest you buckle up as I’ll detail the complete Introduction to LM747 covering datasheet, pinout, features, equivalents, and applications. Let’s jump right in.

Introduction to LM747

  • Designed by National Semiconductor, LM747 is a general-purpose dual-operational amplifier integrated chip.
  • Two operational amplifiers are incorporated that share common power supply leads and a bias network.

  • And these amplifiers are capable of performing two different operations at the same time which makes them a suitable pick for several applications. Though these amplifiers share a common bias network, they are completely independent of each other
  • As two general-purpose amplifiers are used in this chip, it is used to construct op-amp circuits like differential amplification, comparator, and mathematical operations.
  • This device features offset pins which are mainly used to make the output more accurate and efficient.
  • It comes with no latch-up when the input common-mode range is exceeded which sets it free from oscillations.

LM747 Datasheet

Before you incorporate this device into your electrical project, it’s better to scan through the datasheet of the component that features the main characteristics of the component. You can download the datasheet of LM747 from the link given below.

LM747 Pinout

LM747 incorporates 14 pins on board. The following figure shows the pinout diagram of LM747. The following table details the pin name and pin description of each pin on LM747.
Pin Description of JRC4558
Pin No. Pin Description Pin Name
1 Inverting input of op-amp 1 1IN-
2 A non-inverting input of op-amp 1 1IN+
3 The offset null pin is used to remove the offset voltage and control the input voltages for op-amp 1 OFFSET  NULL 1
4 Common negative supply voltage for both Op-amps V-
5 The offset null pin is used to remove the offset voltage and control the input voltages for op-amp 1 OFFSET  NULL 2
6 The non-inverting input of op-amp 2 2IN+
7 Inverting  input of op-amp 2 2IN-
8 The offset null pin is used to remove the offset voltage and control the input voltages for the op-amp 2 OFFSET  NULL 2
9 Positive supply voltage for op-amp 2 V2+
10 The output pin of the op-amp 2 2OUT
11 No connection NC
12 The output pin of the op-amp 1 1OUT
13 Positive supply voltage for op-amp1 V1+
14  The offset null pin is used to remove the offset voltage and control the input voltages for op-amp 1 OFFSET  NULL 1
  • Offset null pins remove the offset voltage and balance the output voltages for both operational amplifiers.
  • While pin 11 is not connected. It is not used for any purpose.

LM747 Features

The following are the main features of LM747.
  • No latch-up
  • Large differential voltage and common mode range
  • Low noise interference among op-amps
  • Total power dissipation = 800mW
  • Differential input voltage = ±30V
  • Low power consumption
  • Supply voltage Max. = ±22V
  • Frequency Compensation is not required
  • Comes with short-circuit protection
  • Common-Mode Rejection Ratio CMRR = 90dB
  • Operating temperature range = -55ºC to +125ºC

LM747 Applications

The following are the main applications of LM747.
  • Employed in mathematical operations
  • Used in amplifiers
  • Used in analog circuits
  • Used for Measuring instruments
  • Incorporated in voltage comparators
  • Employed for Industrial applications
  • Used in Peak detectors

That was all about the Introduction to LM747. If you’re unsure or have any questions, you can leave your query in the section below. I’d love to help you according to the best of my expertise. Feel free to share your valuable feedback and suggestions around the content we share so we keep sharing quality content tailored to your exact needs and requirements. Thank you for reading the article.

LF353N Dual JFET Input Op-Amp Datasheet, Pinout, Features & Applications

Hi Folks! I hope you’re well today. I welcome you on board. Happy to see you around. In this post today, I’ll walk you through the Introduction to LF353N.

The LM393N is a wide bandwidth and high input impedance Dual Input JEFET op-amp that is widely used in high-speed integrators and low noise circuits. The low bias current and input noise make it a good pick for audio amplifier applications. It carries a high slew rate (13V/uS) and wide bandwidth around (4MHz).

I suggest you read this post all the way through, as I’ll detail the complete introduction to LF353N covering datasheet, pinout, features, and applications. Let’s dive in.

Introduction to LF353N

  • Introduced by the Texas Instrument, the LM393N is a high input impedance dual op-amp where the input of this device is attached through a high voltage JFET.
  • It is widely used in low current, low noise fast switching applications.

  • There are two outputs available on the device i.e. Output A and Output B. And two inputs where each input contains further two inputs i.e. inverting input (-) and non-inverting input (+).
  • This chip incorporates two independent op-amps that operate over a wide range of voltages from a single power supply.
  • High slew rate and high input impedance device, LF353N comes with internally compensated input offset voltage.
  • It is also available with a power supply voltage range of ±18 V and with a differential input voltage of around 30V.
  • The power dissipation Pd is 500mW which is defined as the maximum energy dissipated during the working of this device.

LF353N Datasheet

Before you incorporate this device into your electrical project, it’s wise to scan through the datasheet of the component that features the main characteristics of the component. Click the link below to download the datasheet of LF353N.

LF353N Pinout

The following figure shows the pinout diagram of LF353N. This chip incorporates total 8 pins on board. The following table shows the pin name and pin description of each pin installed on the device.
Pin Description of LF353N
Pin No. Pin Description Pin Name
1 The output of Op-Amp 1 OUT (A)
2 Inverting Input of Op-Amp 1 INPUT- A(-)
3 Non-Inverting Input of Op-Amp 1 INPUT- A(+)
4 Ground or Negative supply terminal Power (-Vs)
5 Non-Inverting Input of Op-Amp 2 INPUT- B(+)
6 Inverting Input of Op-Amp 2 INPUT- B(-)
7 The output of Op-Amp 2 OUTPUT B
8 Positive supply terminal +Vcc

LF353N Features

  • Dual Op-Amp that comes with JFET Input
  • High slew rate 13V/µs
  • High Input Impedance 1012?
  • Low Input Noise current
  • Low input noise voltage
  • Supply Current = 6.5mA (max)
  • Bandwidth Gain = 4MHz
  • Supply Voltage = ±18V
  • Available Packages = 8-pin SOIC & PDIP Package

LF353N Equivalent

The following are the equivalents of LF353N.
  • LM1558
  • TL074
  • MCP6002

While working with the alternatives, make sure you cross-check the pinout of them. It’s quite likely the pinout of the alternatives might differ from the pinout of LF353N.

LF353N Applications

The LF353N is used in the following applications.

  • Used in High-Input Impedance designs
  • Employed in Low-noise Audio circuits
  • Used in High-Speed Integrator
  • Incorporated in Sample and Hold Circuit

That’s all for today. I hope you’ve loved reading this article. If you have any questions, you can approach me in the section below, I’d reply to you according to the best of my experience. Feel free to share your valuable suggestions and feedback around the content we share, so we keep producing quality content customized to your needs and requirements. Thank you for reading this article.

MID400 Optocoupler Datasheet, Pinout, Features, Equivalent & Applications

Hi Everyone! I hope you’re well today. Happy to see you around. In this post today, I’ll walk you through the Introduction to MID400.

The MID400 is an 8-pin optically isolated AC line-to-logic Power Line Monitor Optocoupler. The AC line voltage is detected by two back-to-back LEDs that are connected in series with an external resistor. When this device identifies the AC voltage, the output pin goes low and when there is no AC voltage detected, it remains high.

This feature of detecting the AC line voltage is widely employed in AC to DC control and relay latching applications. I suggest you buckle up as I’ll walk you through the complete introduction to MID400 covering datasheet, pinout, features, equivalents, and applications. Let’s dive right in.

Introduction to MID400

  • The MID400 is an 8-pin optically isolated AC line-to-logic Power Line Monitor Optocoupler that identifies the AC line voltage using two back-to-back LEDs that are attached in series with an external resistor.

  • It features high voltage isolation between input and output and comes with an externally adjustable AC voltage sensing level.
  • This device is available with an 8-pin compact DIP package and SMD Package.
  • It is the best pick for AC to DC control applications where remarkable solid-state reliability and excellent optical isolation are needed.
  • It is also applied to low-frequency operations where small size, low power, and TTL compatibility are required.

MID400 Datasheet

While working with this device, it’s wise to go through the datasheet of the component before installing this device into your project. The datasheet highlights the main characteristics of the component. Click the link below if you want to download the datasheet of MID400.

MID400 Pinout

The following figure represents the pinout diagram of MID400.

The following table demonstrates the pin description of MID400.

Pin Description of MID400
Pin No. Pin Description Pin Name
1 AC Live wire is connected to this Pin AC Live
2 No connection Not used
3 AC Neutral wire is connected to this pin AC Neutral
4 No connection Not used
5 The ground pin of the device Ground
6 Open collector output pin V Output
7 Used to control time delay and AC voltage sensing by adding a capacitor to this pin Auxiliary
8 Device Operating Voltage Vcc

You can see from the table above… out of 8 pins, two pins(2 & 4) are not used for any connection. Pin 5 is the ground and Pin 8 is the voltage supply pin.

MID400 Features

The following are the main features of MID400.

  • Working Insulation Voltage Max. = 630Vpeak
  • LED on-state input current = ±30mA
  • Power Line Monitor IC
  • Low-level Output Current = 20mA
  • Low-level Output Voltage = 0.18V
  • LED forward voltage drop = 1.5V
  • Supply Voltage (Vcc) = 7V
  • Turn-on and Turn-off Time = 1ms each
  • Available Packages = 8-pin DIP and SMD Package

MID400 Sample Application Circuit

The following figure shows the sample application circuit of MID400.
  • MID400 is an AC line monitor where the phase wire is connected to the first pin of the device and the neutral wire is connected to the third pin of the device using a resistor of 22-kilo ohm. This resistor is used to control and limit the current flowing through the AC line voltage.
  • Pin 6 is the output pin that remains high when there is no AC voltage and it remains low when AC line voltage is detected.
  • Optocoupling property is used in this device which keeps both output voltage and AC line completely isolated.
  • Pin 6 is the output pin or open collector pin that is attached to the pull-up resistor of 300 ohms which is further connected with the Vcc pin of the device… as shown in the figure above.
  • The capacitor is attached to pin 7 which is mainly used to control the time delay and sensing level of the output.

MID400 Alternative

The following are the alternatives to MID400:

  • ACS71020
  • UC1903

While working with the alternatives, double-check the pinout of the alternatives, as the pinout of the alternatives might differ from the pinout of MID400.

MID400 Applications

MID400 is used in the following applications.

  • Employed in AC sensing applications
  • Employed in Latching circuits
  • Incorporated in Isolation switch
  • Used in AC to DC control applications
  • Used in AC to DC converters

That was all about the Introduction to MID400. If you’re unsure or have any queries, you can pop your question in the section below. I’d love to help you the best way I can. You’re most welcome to share your valuable suggestions and feedback around the content we share, so we keep producing quality content tailored to your exact needs and requirements. Thank you for reading the article.

TDA7265 Audio Amplifier Datasheet, Pinout, Features & Applications

Hi Friends! I hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the Introduction to TDA7265.

TDA7265 is a +25-watt class AB dual audio power stereo amplifier. This multi-watt package IC is carefully designed for high-quality audio power amplification applications. This device receives a low-input audio signal and amplifies it into a high-quality audio output.

I suggest you buckle up as I will detail the complete introduction to TDA7265 covering datasheet, pinout, features, and applications. Let’s jump right in.

Introduction to TDA7265

  • TDA7265 is a +25-watt class AB dual audio power stereo amplifier that is mainly employed in audio amplifiers and woofer amplifiers.
  • This device gets a low-input audio signal and converts it into a high-output audio signal.

  • This chip features output short circuit protection and comes with a mute-enabled pin.
  • Only a few components are required to put this device into working condition.
  • Total power dissipation is 30W which is the amount of energy released during the working of this device.
  • It comes with an operating voltage range of ±5 to ±25V.
  • The operating temperature range is -20°C to +85°C while the storage temperature range is -40°C to +150°C.

TDA7265 Datasheet

Before you apply this component to your electrical project, it’s wise to scan through the datasheet of the device that comes with the main characteristics of the component. Click the link below and download the datasheet of TDA7265.

Additional circuit configurations are available in the datasheet of this chip. You can use any configuration to put this chip in working condition.

TDA7265 Pinout

The TDA7265 incorporates 11 pins on the device. The following figure shows the pinout diagram of TDA7265.

The table below demonstrates the pin name and pin description of each pin on the board.

Pin Description of TDA7265
Pin No. Pin Description Pin Name
1 A negative power supply is connected to this pin -Vs
2 This pin receives the amplified output of channel A OUTPUT 1
3 A positive power supply is connected to this pin +Vs
4 This pin receives the amplified output of channel B OUTPUT 2
5 This pin is triggered low to disable the audio output MUTE
6 A negative power supply is connected to this pin -Vs
7 A non-inverting input of channel B amplifier IN+(2)
8 Inverting input of channel B amplifier IN-(2)
9 This pin is connected to the ground GND
10 Inverting input of channel A amplifier IN-(1)
11 A non-inverting input of channel A amplifier IN+(1)

TDA7265 Features

The following are the main features of TDA7265.

  • Comes with a wide operating supply voltage range
  • Available with High output power : 25 + 25 W @ RL = 8 ?, Vs = ± 20V
  • Features output short circuit protection
  • Comes with a mute enable pin
  • Incorporates thermal overload protection
  • A few components are required to put the amplifier in working condition
  • Stand-by feature (low Iq)
  • Total power dissipation = 30W
  • Split supply
  • Maximum supply voltage = ±25V
  • Operating voltage range = ±5 to ±25V
  • Repetitive current allowed to draw through each output Max = 4.5A
  • Storage Temperature = -40°C  to +150°C
  • Operating temperature = -20°C  to +85°C
  • No pop at turn-on/off

TDA7265 Operational Circuit

The following figure shows the operational circuit diagram of TDA7265. You need to connect the components as shown in the figure below. Doing this will put your amplifier in working condition.

  • Two power supplies are used to power up this circuit one with the negative voltage V- and the other with the positive voltage V+.
  • Pin no. 11 of this chip is given with the audio input signal for channel B and the resulting amplified output is heard through the right speaker. The Pin no. 07 of this chip is given with the audio input signal for channel A and the resulting amplified output is heard through the left speaker.
  • A positive voltage supply source is used to power up the TDA7265 chip while the separate control unit is used to trigger the mute pin low. The two amplified outputs behave as a dual supply operation.

TDA7265 Applications

The TDA7265 is used in the following applications.
  • Employed in stereo TV sets
  • Incorporated in woofer amplifiers
  • Used in audio power amplifiers
  • Used in music players
  • Used in student and hobby projects
  • Employed in guitar amplifiers
  • Used in Hi-Fi music centers

That’s all for today. I hope you’ve enjoyed reading this article. If you’re unsure or have any questions, you can ask me in the section below. I’d love to help you the best way I can. Feel free to share your valuable suggestions and feedback around the content we share, so we keep producing quality content customized to your exact needs and requirements. Thank you for reading the post.

LM4558 Dual Op-Amp Datasheet, Pinout, Features & Applications

Hi Friends! I welcome you on board. Happy to see you around. In this post today, I’ll walk you through the Introduction to LM4558.

LM4558 is a dual-operational amplifier that comes with two amplifiers on board. This device belongs to the LM’xx’ family where LM stands for linear monolithic which means, it is made of analog components that are incorporated into the silicon piece.

This component comes with an internal frequency compensation method that guarantees the device's stability without the need for external components.

I suggest you read this post all the way through as I’ll detail the complete Introduction to LM4558 covering datasheet, pinout, features, and applications. Continue reading.

Introduction to LM4558

  • LM4558 is a monolithic dual-operational amplifier that carries two amplifiers on board.

  • This device belongs to the LM’xx’ family where LM stands for linear monolithic which demonstrates the availability of analog components that are incorporated on the silicon piece.
  • It comes with a high common-mode input voltage range and no latch-up on this device makes it an ideal pick for voltage-follower applications.
  • This chip comes with an internal frequency compensation method that guarantees the device's stability. Moreover, it is protected against short-circuiting.
  • The device can be utilized in the op-amp operation circuits including differential amplification, comparators, and mathematical operations.
  • As this component exhibits two independent amplifiers on board, it is capable of performing two completely different operations at the same time which makes it a suitable pick for several applications.
  • The LM4558 comes with an operating temperature range from 0ºC to 70ºC while the total power dissipation is 200mW.
  • The common-mode Rejection Ratio CMRR is 80dB and these amplifiers feature low noise interference.

LM4558 Datasheet

While working with this device, it’s wise to go through the datasheet of the component that features the main characteristics of the component. You can download the datasheet of LM4558 by clicking the link below.

LM4558 Pinout

This chip is an 8-pin device. The following figure shows the pinout diagram of LM4558.

The following table represents the pin name and pin description incorporated on the chip.

Pin Description of JRC4558
Pin No. Pin Description Pin Name
1 The output pin of the Op-amp 1 1OUT
2 The inverting input of Op-amp 1 1IN-
3 The non-inverting input of Op-amp 1 1IN+
4 Ground or Negative supply terminal GND
5 A non-inverting input of Op-amp 2 2IN+
6 The inverting input of Op-amp 2 2IN-
7 The output pin of the Op-amp 2 2OUT
8 Positive supply terminal VCC

LM4558 Features and Specifications

The following are the main features and specifications of LM4558.

  • Low noise interference among op-amps
  • Dual  Supply Operation = +15V and -15V
  • No frequency Compensation Required
  • Operating temperature = 0ºC to 70ºC
  • Common-Mode Rejection Ratio CMRR = 80dB
  • Two independent operational amplifiers
  • Built-in Short-Circuit Protection
  • No latch-up
  • Large common mode and differential voltage range
  • Total power dissipation = 200mW
  • Parameter tracking over a temperature range
  • Carries low noise input transistors
  • Phase and gain match between amplifiers
  • Moisture Sensitivity Level 3
  • Single Supply Operation = +5.0 V to +15 V

LM4558 Applications

The LM4558 is used in the following applications.

  • Used in Measuring instruments
  • Employed in Industrial applications
  • Incorporated in Logic voltage translation
  • Used in voltage comparators and peak detectors
  • Employed in oscillators and amplifiers
  • Used in mathematical operations

That’s all for today. I hope you’ve enjoyed reading this article. If you have any questions, you can pop your queries in the section below, I’d love to help you the best way I can. You are most welcome to share your valuable feedback and suggestions around the content we share so we keep coming back with quality content customized to your exact needs and requirements. Thank you for reading the article.

The Key Benefits of Data Visualization

Hi Friends! Hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the key benefits of data visualization. Data visualization is something that used to be a competitive advantage, but now it is becoming a necessity to survive. I have outlined some of the key benefits of data visualization and I will explain each point very briefly. If you take one thing away from this post it should be that data visualization is important and you should be implanting data visualization techniques into your business or organization.

Reducing Errors

Keeping track of your data will let you tell a story about your customers and your business. One negative part of the story is that data visualization will let you identify the problems that are happening with your company. For instance, if you analyze your data as an eCommerce business and see that a large percentage of your customers are getting to the checkout and then abandoning their cart, then you are now aware that something is wrong. You could use the data to infer that something is off with your check out system and that you need to make improvements. Testing out new checkout pages could boost your conversions, and that is just one basic way of how knowing your data can reduce errors in your business. There is a good chance that if a company has never used data to identify errors, then they will find ways to limit errors and improve their business from data visualization.

Identify Trends

By using data visualization, you will know what kind of trends are going on with your business and the industry that you are in as a whole. Why would knowing trends help my business? Well, if you can identify trends before your competitors, then that is going to give you an upper hand right off the bat. Leaders in every industry are always looking at trends and seeing if there is a business opportunity in that trend. Usually, if you can be one of the people to capitalize on a trend, then you are going to gain a lot of market share. It is basic economics to know that the early movers and early adopters to a trend are usually the most successful. Use data to identify the trends, and then come up with ways to make money from the trend!

Improve Your Marketing

The last point that I have as a benefit for data visualization is that your marketing can drastically improve. A surefire way to improve your marketing is to look at the data that you have and identify where you can be more effective. It can also let you know which kind of marketing is unsuccessful and not profitable. If you know that something is not profitable, then you could make a much bigger return on investment if you put money into the marketing channels that you are seeing a great ROI! That’s all for today. I hope you’ve enjoyed reading this article. If you have any questions related to this article, you can ask me in the comment section below. I’d love to help you the best way I can. Thank you for reading the article.
Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir