LF353N Dual JFET Input Op-Amp Datasheet, Pinout, Features & Applications

Hi Folks! I hope you’re well today. I welcome you on board. Happy to see you around. In this post today, I’ll walk you through the Introduction to LF353N.

The LM393N is a wide bandwidth and high input impedance Dual Input JEFET op-amp that is widely used in high-speed integrators and low noise circuits. The low bias current and input noise make it a good pick for audio amplifier applications. It carries a high slew rate (13V/uS) and wide bandwidth around (4MHz).

I suggest you read this post all the way through, as I’ll detail the complete introduction to LF353N covering datasheet, pinout, features, and applications. Let’s dive in.

Introduction to LF353N

  • Introduced by the Texas Instrument, the LM393N is a high input impedance dual op-amp where the input of this device is attached through a high voltage JFET.
  • It is widely used in low current, low noise fast switching applications.

  • There are two outputs available on the device i.e. Output A and Output B. And two inputs where each input contains further two inputs i.e. inverting input (-) and non-inverting input (+).
  • This chip incorporates two independent op-amps that operate over a wide range of voltages from a single power supply.
  • High slew rate and high input impedance device, LF353N comes with internally compensated input offset voltage.
  • It is also available with a power supply voltage range of ±18 V and with a differential input voltage of around 30V.
  • The power dissipation Pd is 500mW which is defined as the maximum energy dissipated during the working of this device.

LF353N Datasheet

Before you incorporate this device into your electrical project, it’s wise to scan through the datasheet of the component that features the main characteristics of the component. Click the link below to download the datasheet of LF353N.

LF353N Pinout

The following figure shows the pinout diagram of LF353N. This chip incorporates total 8 pins on board. The following table shows the pin name and pin description of each pin installed on the device.
Pin Description of LF353N
Pin No. Pin Description Pin Name
1 The output of Op-Amp 1 OUT (A)
2 Inverting Input of Op-Amp 1 INPUT- A(-)
3 Non-Inverting Input of Op-Amp 1 INPUT- A(+)
4 Ground or Negative supply terminal Power (-Vs)
5 Non-Inverting Input of Op-Amp 2 INPUT- B(+)
6 Inverting Input of Op-Amp 2 INPUT- B(-)
7 The output of Op-Amp 2 OUTPUT B
8 Positive supply terminal +Vcc

LF353N Features

  • Dual Op-Amp that comes with JFET Input
  • High slew rate 13V/µs
  • High Input Impedance 1012?
  • Low Input Noise current
  • Low input noise voltage
  • Supply Current = 6.5mA (max)
  • Bandwidth Gain = 4MHz
  • Supply Voltage = ±18V
  • Available Packages = 8-pin SOIC & PDIP Package

LF353N Equivalent

The following are the equivalents of LF353N.
  • LM1558
  • TL074
  • MCP6002

While working with the alternatives, make sure you cross-check the pinout of them. It’s quite likely the pinout of the alternatives might differ from the pinout of LF353N.

LF353N Applications

The LF353N is used in the following applications.

  • Used in High-Input Impedance designs
  • Employed in Low-noise Audio circuits
  • Used in High-Speed Integrator
  • Incorporated in Sample and Hold Circuit

That’s all for today. I hope you’ve loved reading this article. If you have any questions, you can approach me in the section below, I’d reply to you according to the best of my experience. Feel free to share your valuable suggestions and feedback around the content we share, so we keep producing quality content customized to your needs and requirements. Thank you for reading this article.

MID400 Optocoupler Datasheet, Pinout, Features, Equivalent & Applications

Hi Everyone! I hope you’re well today. Happy to see you around. In this post today, I’ll walk you through the Introduction to MID400.

The MID400 is an 8-pin optically isolated AC line-to-logic Power Line Monitor Optocoupler. The AC line voltage is detected by two back-to-back LEDs that are connected in series with an external resistor. When this device identifies the AC voltage, the output pin goes low and when there is no AC voltage detected, it remains high.

This feature of detecting the AC line voltage is widely employed in AC to DC control and relay latching applications. I suggest you buckle up as I’ll walk you through the complete introduction to MID400 covering datasheet, pinout, features, equivalents, and applications. Let’s dive right in.

Introduction to MID400

  • The MID400 is an 8-pin optically isolated AC line-to-logic Power Line Monitor Optocoupler that identifies the AC line voltage using two back-to-back LEDs that are attached in series with an external resistor.

  • It features high voltage isolation between input and output and comes with an externally adjustable AC voltage sensing level.
  • This device is available with an 8-pin compact DIP package and SMD Package.
  • It is the best pick for AC to DC control applications where remarkable solid-state reliability and excellent optical isolation are needed.
  • It is also applied to low-frequency operations where small size, low power, and TTL compatibility are required.

MID400 Datasheet

While working with this device, it’s wise to go through the datasheet of the component before installing this device into your project. The datasheet highlights the main characteristics of the component. Click the link below if you want to download the datasheet of MID400.

MID400 Pinout

The following figure represents the pinout diagram of MID400.

The following table demonstrates the pin description of MID400.

Pin Description of MID400
Pin No. Pin Description Pin Name
1 AC Live wire is connected to this Pin AC Live
2 No connection Not used
3 AC Neutral wire is connected to this pin AC Neutral
4 No connection Not used
5 The ground pin of the device Ground
6 Open collector output pin V Output
7 Used to control time delay and AC voltage sensing by adding a capacitor to this pin Auxiliary
8 Device Operating Voltage Vcc

You can see from the table above… out of 8 pins, two pins(2 & 4) are not used for any connection. Pin 5 is the ground and Pin 8 is the voltage supply pin.

MID400 Features

The following are the main features of MID400.

  • Working Insulation Voltage Max. = 630Vpeak
  • LED on-state input current = ±30mA
  • Power Line Monitor IC
  • Low-level Output Current = 20mA
  • Low-level Output Voltage = 0.18V
  • LED forward voltage drop = 1.5V
  • Supply Voltage (Vcc) = 7V
  • Turn-on and Turn-off Time = 1ms each
  • Available Packages = 8-pin DIP and SMD Package

MID400 Sample Application Circuit

The following figure shows the sample application circuit of MID400.
  • MID400 is an AC line monitor where the phase wire is connected to the first pin of the device and the neutral wire is connected to the third pin of the device using a resistor of 22-kilo ohm. This resistor is used to control and limit the current flowing through the AC line voltage.
  • Pin 6 is the output pin that remains high when there is no AC voltage and it remains low when AC line voltage is detected.
  • Optocoupling property is used in this device which keeps both output voltage and AC line completely isolated.
  • Pin 6 is the output pin or open collector pin that is attached to the pull-up resistor of 300 ohms which is further connected with the Vcc pin of the device… as shown in the figure above.
  • The capacitor is attached to pin 7 which is mainly used to control the time delay and sensing level of the output.

MID400 Alternative

The following are the alternatives to MID400:

  • ACS71020
  • UC1903

While working with the alternatives, double-check the pinout of the alternatives, as the pinout of the alternatives might differ from the pinout of MID400.

MID400 Applications

MID400 is used in the following applications.

  • Employed in AC sensing applications
  • Employed in Latching circuits
  • Incorporated in Isolation switch
  • Used in AC to DC control applications
  • Used in AC to DC converters

That was all about the Introduction to MID400. If you’re unsure or have any queries, you can pop your question in the section below. I’d love to help you the best way I can. You’re most welcome to share your valuable suggestions and feedback around the content we share, so we keep producing quality content tailored to your exact needs and requirements. Thank you for reading the article.

TDA7265 Audio Amplifier Datasheet, Pinout, Features & Applications

Hi Friends! I hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the Introduction to TDA7265.

TDA7265 is a +25-watt class AB dual audio power stereo amplifier. This multi-watt package IC is carefully designed for high-quality audio power amplification applications. This device receives a low-input audio signal and amplifies it into a high-quality audio output.

I suggest you buckle up as I will detail the complete introduction to TDA7265 covering datasheet, pinout, features, and applications. Let’s jump right in.

Introduction to TDA7265

  • TDA7265 is a +25-watt class AB dual audio power stereo amplifier that is mainly employed in audio amplifiers and woofer amplifiers.
  • This device gets a low-input audio signal and converts it into a high-output audio signal.

  • This chip features output short circuit protection and comes with a mute-enabled pin.
  • Only a few components are required to put this device into working condition.
  • Total power dissipation is 30W which is the amount of energy released during the working of this device.
  • It comes with an operating voltage range of ±5 to ±25V.
  • The operating temperature range is -20°C to +85°C while the storage temperature range is -40°C to +150°C.

TDA7265 Datasheet

Before you apply this component to your electrical project, it’s wise to scan through the datasheet of the device that comes with the main characteristics of the component. Click the link below and download the datasheet of TDA7265.

Additional circuit configurations are available in the datasheet of this chip. You can use any configuration to put this chip in working condition.

TDA7265 Pinout

The TDA7265 incorporates 11 pins on the device. The following figure shows the pinout diagram of TDA7265.

The table below demonstrates the pin name and pin description of each pin on the board.

Pin Description of TDA7265
Pin No. Pin Description Pin Name
1 A negative power supply is connected to this pin -Vs
2 This pin receives the amplified output of channel A OUTPUT 1
3 A positive power supply is connected to this pin +Vs
4 This pin receives the amplified output of channel B OUTPUT 2
5 This pin is triggered low to disable the audio output MUTE
6 A negative power supply is connected to this pin -Vs
7 A non-inverting input of channel B amplifier IN+(2)
8 Inverting input of channel B amplifier IN-(2)
9 This pin is connected to the ground GND
10 Inverting input of channel A amplifier IN-(1)
11 A non-inverting input of channel A amplifier IN+(1)

TDA7265 Features

The following are the main features of TDA7265.

  • Comes with a wide operating supply voltage range
  • Available with High output power : 25 + 25 W @ RL = 8 ?, Vs = ± 20V
  • Features output short circuit protection
  • Comes with a mute enable pin
  • Incorporates thermal overload protection
  • A few components are required to put the amplifier in working condition
  • Stand-by feature (low Iq)
  • Total power dissipation = 30W
  • Split supply
  • Maximum supply voltage = ±25V
  • Operating voltage range = ±5 to ±25V
  • Repetitive current allowed to draw through each output Max = 4.5A
  • Storage Temperature = -40°C  to +150°C
  • Operating temperature = -20°C  to +85°C
  • No pop at turn-on/off

TDA7265 Operational Circuit

The following figure shows the operational circuit diagram of TDA7265. You need to connect the components as shown in the figure below. Doing this will put your amplifier in working condition.

  • Two power supplies are used to power up this circuit one with the negative voltage V- and the other with the positive voltage V+.
  • Pin no. 11 of this chip is given with the audio input signal for channel B and the resulting amplified output is heard through the right speaker. The Pin no. 07 of this chip is given with the audio input signal for channel A and the resulting amplified output is heard through the left speaker.
  • A positive voltage supply source is used to power up the TDA7265 chip while the separate control unit is used to trigger the mute pin low. The two amplified outputs behave as a dual supply operation.

TDA7265 Applications

The TDA7265 is used in the following applications.
  • Employed in stereo TV sets
  • Incorporated in woofer amplifiers
  • Used in audio power amplifiers
  • Used in music players
  • Used in student and hobby projects
  • Employed in guitar amplifiers
  • Used in Hi-Fi music centers

That’s all for today. I hope you’ve enjoyed reading this article. If you’re unsure or have any questions, you can ask me in the section below. I’d love to help you the best way I can. Feel free to share your valuable suggestions and feedback around the content we share, so we keep producing quality content customized to your exact needs and requirements. Thank you for reading the post.

LM4558 Dual Op-Amp Datasheet, Pinout, Features & Applications

Hi Friends! I welcome you on board. Happy to see you around. In this post today, I’ll walk you through the Introduction to LM4558.

LM4558 is a dual-operational amplifier that comes with two amplifiers on board. This device belongs to the LM’xx’ family where LM stands for linear monolithic which means, it is made of analog components that are incorporated into the silicon piece.

This component comes with an internal frequency compensation method that guarantees the device's stability without the need for external components.

I suggest you read this post all the way through as I’ll detail the complete Introduction to LM4558 covering datasheet, pinout, features, and applications. Continue reading.

Introduction to LM4558

  • LM4558 is a monolithic dual-operational amplifier that carries two amplifiers on board.

  • This device belongs to the LM’xx’ family where LM stands for linear monolithic which demonstrates the availability of analog components that are incorporated on the silicon piece.
  • It comes with a high common-mode input voltage range and no latch-up on this device makes it an ideal pick for voltage-follower applications.
  • This chip comes with an internal frequency compensation method that guarantees the device's stability. Moreover, it is protected against short-circuiting.
  • The device can be utilized in the op-amp operation circuits including differential amplification, comparators, and mathematical operations.
  • As this component exhibits two independent amplifiers on board, it is capable of performing two completely different operations at the same time which makes it a suitable pick for several applications.
  • The LM4558 comes with an operating temperature range from 0ºC to 70ºC while the total power dissipation is 200mW.
  • The common-mode Rejection Ratio CMRR is 80dB and these amplifiers feature low noise interference.

LM4558 Datasheet

While working with this device, it’s wise to go through the datasheet of the component that features the main characteristics of the component. You can download the datasheet of LM4558 by clicking the link below.

LM4558 Pinout

This chip is an 8-pin device. The following figure shows the pinout diagram of LM4558.

The following table represents the pin name and pin description incorporated on the chip.

Pin Description of JRC4558
Pin No. Pin Description Pin Name
1 The output pin of the Op-amp 1 1OUT
2 The inverting input of Op-amp 1 1IN-
3 The non-inverting input of Op-amp 1 1IN+
4 Ground or Negative supply terminal GND
5 A non-inverting input of Op-amp 2 2IN+
6 The inverting input of Op-amp 2 2IN-
7 The output pin of the Op-amp 2 2OUT
8 Positive supply terminal VCC

LM4558 Features and Specifications

The following are the main features and specifications of LM4558.

  • Low noise interference among op-amps
  • Dual  Supply Operation = +15V and -15V
  • No frequency Compensation Required
  • Operating temperature = 0ºC to 70ºC
  • Common-Mode Rejection Ratio CMRR = 80dB
  • Two independent operational amplifiers
  • Built-in Short-Circuit Protection
  • No latch-up
  • Large common mode and differential voltage range
  • Total power dissipation = 200mW
  • Parameter tracking over a temperature range
  • Carries low noise input transistors
  • Phase and gain match between amplifiers
  • Moisture Sensitivity Level 3
  • Single Supply Operation = +5.0 V to +15 V

LM4558 Applications

The LM4558 is used in the following applications.

  • Used in Measuring instruments
  • Employed in Industrial applications
  • Incorporated in Logic voltage translation
  • Used in voltage comparators and peak detectors
  • Employed in oscillators and amplifiers
  • Used in mathematical operations

That’s all for today. I hope you’ve enjoyed reading this article. If you have any questions, you can pop your queries in the section below, I’d love to help you the best way I can. You are most welcome to share your valuable feedback and suggestions around the content we share so we keep coming back with quality content customized to your exact needs and requirements. Thank you for reading the article.

Interfacing Flame Sensor with Arduino

Hello everyone! I hope you all will be fine and having fun. Today I am going to tell you that how can you make a simple program for Interfacing Flame Sensor with Arduino. Flame sensor is used in offices, home and at different places to detect the fire. First of all I would like to tell you about the working principle of the flame sensor. Flame sensor is a device designed for the detection of the fire and to respond it. They are usually designed for the detection of most frequently used industrial fuel e.g. diesel, gasoline, karosene, ethylene, hydrogen etc. They are designed in way to distinguish between the radiations from the sunlight and the actual flames. There different types of flame sensors e.g. Ultraviolet (UV) detectors, Infrared (IR) flame detectors, UV/IR detectors, IR/IR flame detectors, closed circuit video cameras. The purpose of these all flame detectors/sensors is almost similar i.e. to detect the fire and responding quickly to it. The flame sensors have a wide range of applications in our daily life e.g. fume cupboards, felt manufacture, nuclear industry, pharmaceutical industries, printing, spray booths, generator, storage tanks, industrial heating and drying systems etc.
Where To Buy?
No.ComponentsDistributorLink To Buy
1Flame SensorsAmazonBuy Now
2Arduino UnoAmazonBuy Now

Interfacing Flame Sensor with Arduino

In this section of the tutorial Interfacing Flame Sensor with Arduino, I will explain you the step by step procedure to make a simple algorithm or program in Arduino software for the interfacing of flame sensor with Arduino. The algorithm is pretty simple. I will set a threshold limit, when the temperature exceeds that limit, an LED will be turned on to show the there is something wrong. You can also attach a buzzer with the Arduino. When the fire will be detected buzzer will be turned on automatically. First if all I would like to share the complete source code for Interfacing Flame Sensor with Arduino with all of you guys.
  • You can download the complete source code here by clicking on the button below.
  • Just download the .rar file, extract it and enjoy the complete simulation.

Components Required

Here, I am going to show you the list of all the components used in this project.
  • Arduino UNO
  • Flame Sensor
  • LED
  • Soldering Iron
  • Soldering Gum
  • Power Supply (12V)
  • Jumper Wires
  • Varrow Board
Brief Description of the Components
  • Arduino UNO acts as the back bone of the project. It manipulates the whole source code uploaded to the board, prints the desired data on the serial monitor and also prints the executed commands on the LCD. Arduino UNO is shown in the figure below.
  • Power Supply of 12V is used to turn the entire system ON. Because, we can not test and verify our system until we have not switched it ON. Power supply used for this project is shown in the figure below.
  • Jumper Wires are used to make the connections of the all the components in order to make the complete circuit with proper working. Jumper wires are shown in the figure below.
  • Flame Sensor is used for the detection of the temperature and for showing the immediate response when the temperature is above the threshold. Flame sensor is shown in the figure below.
Circuit Diagram
  • Circuit diagram for the tutorial Interfacing Flame Sensor with Arduino is shown in the figure below.
  • You can run this project properly, by making the circuit first, identical to the circuit diagram shown in the figure above.
  • The analog pin A5 of the Arduino UNO will help us in reading the data from the sensor.
  • The other two pins of the sensor are connected to the supply of 5V and ground respectively as you can see from the above figure.

Block Diagram

  • The block diagram for the project Interfacing Flame Sensor with Arduino is shown in the figure below.
  • Power supply is provided in order to run the project properly.
  • Arduino is the backbone of the whole system and controls all of the devices used.
  • When the temperature crosses the adjusted threshold the LED will be turned ON to indicator that the fire is detected.
  • In normal condition LED will remain Off.

Source Code Descritption

  • Source code for Interfacing Flame Sensor with Arduino is given below.
  • Just copy the entire code and paste it in your Arduino software and upload it to the Arduino board.
#include<SoftwareSerial.h>//library for software serial object

int sensorPin = A0; // flame sensor is attached to A0 pin of Arduino

int sensorValue = 0; // Initial value of the sensor is 0

int led = 9; // an LED is attached to the pin no 9 of Arduino

void setup() //method used to run the code for the one time
{

pinMode(led, OUTPUT);//changint the mode of LED as an output

Serial.begin(9600);//rate at which arduino communicates with laptop

}

void loop()//method used to run the code repeatedly

{

Serial.println("Welcome to TechPonder Flame Sensor Tutorial");//prints on the serial monitor

sensorValue = analogRead(sensorPin);//reads the analog data from the sensor

Serial.println(sensorValue);//prints the sensor data on serial monitor

if (sensorValue < 100)//threshold for the LED indication

{

Serial.println("Fire Detected");//prints on the serial monitor

Serial.println("LED on");//prints on the serial monitor

digitalWrite(led,HIGH);//turning on the LED

delay(1000);//delay of 1 second

}

digitalWrite(led,LOW);//turning of the LED

delay(sensorValue);

}
  • First of all I have declared library of software serial.
  • Then I have defined the pins of Arduino UNO at which the flame sensor and LED are connected.
  • Then I have changed the mode of LED to output.
  • Then I have started reading the analog data from the flame sensor.
  • I have adjusted a threshold, when the temperature exceeds that value LED will be turned on.
  • When the temperature is below the threshold LED will remain off e.g in normal conditions.
So, that is all from the tutorial Interfacing Flame Sensor with Arduino. I hope you enjoyed this tutorial. If you face any sort of problem you can ask me in comments anytime without even feeling any kind of hesitation. I will try my level best to solve your issues in a better way, if possible. I will explore Arduino by making different projects on it and will share all of them with you as well in my later tutorials. Till then, Take care :)

Interfacing Temperature & Humidity Sensor with Arduino

Hello everyone! I hope you all will be absolutely fine and having fun. In the tutorial Interfacing Temperature & Humidity Sensor with Arduino I will tell you that how can you interface temperature and humidity sensor named as DHT11 with Arduino and how can you observe the temperature and humidity level using this sensor. This sensor has usually three pins but some of its types has four pins but only the three pins are of importance for us e.g. VCC, GND and the third pin for reading the data from the sensor. In the tutorial Interfacing Temperature & Humidity Sensor with Arduino, I will make a simple Arduino program which will estimate the level of temperature and humidity continuously and will display the value of both temperature and humidity on the serial monitor. You will see that the sensor will give different readings for the different environments.
Where To Buy?
No.ComponentsDistributorLink To Buy
1LCD 16x2AmazonBuy Now
2DHT11AmazonBuy Now
3Arduino UnoAmazonBuy Now

Temperature & Humidity Sensor with Arduino

I will tell you the step by step procedure that how can you interface DHT11 sensor with Arduino and how to make a simple program in Arduino software to read the data continuously from the sensor and how to display the obtained data on the serial monitor. You can also display this data on Liquid Crystal Display (LCD) as I have discussed in detail in my previous tutorial DC Motor Direction Control using Arduino, DC Motor Speed Control using Arduino, Stepper Motor Direction Control in Arduino and Stepper Motor Speed Control using Arduino.
  • You can download the complete source code here by clicking on the button below.
  • Download .rar file, extract this file and enjoy the complete simulation code.

Block Diagram

  • First of all, I would like to explain you the algorithm with the help of a block diagram.
  • It will help in better understanding of an algorithm.
  • The block diagram for interfacing of temperature and humidity sensor with Arduino is given in the figure below.
  • Power supply in necessary to turn the whole system ON.
  • DHT11 is connected with the Arduino UNO.
  • Arduino UNO reads the data from the DHT11 sensor and displays the obtained data on the serial monitor.
  • That data will also be displayed on the LCD.

Circuit Diagram

  • The complete wiring diagram for this project is shown in the figure below.
  • You can run this project properly, by making the circuit first, identical to the circuit diagram shown in the figure above.
  • The analog pin A3 of the Arduino UNO will help us in reading the data from the sensor.
  • The other two pins of the sensor are connected to the supply of 5V and ground respectively as you can see from the above figure.

Flow Chart

  • The flow chart will help you to understand the flow of the program while executing.
  • The flow chart for this project is shown in the figure below.
  • The data from the sensor can be estimated on the serial monitor only after opening the serial port
  • Then data will be displayed on the LCD and at end serial port must be closed in order to avoid the exchange of unwanted commands.

Source Code Description

  • The source code for this project is given below.
  • You have to just copy and paste the code given below in your Arduino software after properly interfacing DHT11 with the Arduino.
  • After uploading the code onto your Arduino board you will be able to observe the humidity and temperature and humidity level on serial monitor.
#include<dht.h>// DHT11 humidity sensor library
#include<LiquidCrystal.h> //LCD library
dht DHT; //Creating sensor object
#define DHT11_PIN A3 // Sensor is connected to Arduino pin 3
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);// LCD connected with Arduino on these pins
void setup()
{
  Serial.begin(9600); //setting baud rate
  Serial.println("   =====================================================");
  Serial.println("   ||   Welcome to Temperarue and Humidity Detector   ||");
  Serial.println("   =====================================================");
  Serial.println("");
  lcd.begin(20, 4); // initialinzing the LCD order
  lcd.setCursor(4,1); //Setting the cursor on LCD
  lcd.print("Welcome to");//printing on LCD
  lcd.setCursor(2,2);
  lcd.print("Humidity detector");
  delay(2000);//adding delay of 2 secons or 2000 msec
  }
void loop()//method used to run the code repeatedly
{
  int chk = DHT.read11(DHT11_PIN); //Reading data from sensor
  Serial.print(" Humidity = ");//prints on the serial monitor
  Serial.print(DHT.humidity);// prints obtained humidity on serial port
  Serial.print(" g/m^3");

  lcd.clear();//clears all the data on LCD
  delay(1000);//adding delay of 1 second
  lcd.display(); //starting the display of LCD after clearing
  lcd.setCursor(0,0);
  lcd.print("Humidity=");
  lcd.print(DHT.humidity);
  lcd.print(" g/m^3");
  
  Serial.print("    \tTemperature = ");//prints on the serial monitor
  Serial.print(DHT.temperature, 1);//prints obtained temperature on serial port
  Serial.println(" degrees");

  lcd.setCursor(0,1);
  lcd.print("Temperature=");//prints on LCD
  lcd.print(DHT.temperature, 1);//prints the obtained temperature on LCD
  lcd.print(" deg");

  lcd.setCursor(1,2);
  lcd.print("www.TheEngineering");
  lcd.setCursor(4,3);
  lcd.print("Projects.com");

  delay(2000);//adding the delay of 2 seconds
  }  
  • I am going to explain you that how this code is working!
  • First of all I have added the library in the libraries folder at the destination where the Arduino software is installed.
  • I have defined DHT11’s library in the source code then.
  • Then I have defined the library for LCD.
  • I have defined the pin at which DHT11 is attached with the Arduino board.
  • Then I have defined the Arduino pins at which the LCD in interface.
  • Then by opening the serial port I have started to print the level of temperature and humidity on the serial monitor as well as on the 20×4 LCD.
  • At the end, I have added the delay of 2 seconds so that the speed of the data to be printed on the serial monitor can be reduced to some extent in order to observe properly.
  • This was the brief description of the source code.
That is all from the tutorial Interfacing Temperature & Humidity Sensor with Arduino. I hope you enjoyed this tutorial. If you are facing any problem regarding any of my tutorials, you can ask me freely in the comments without even feeling any kind of hesitation, I will try my level best to solve you issues in a better way, if possible. I will explore Arduino by making further projects and will share them with you as well. So, till then, Take Care :)

Interfacing Arduino with HC-05

Hello friends, i hope you all are fine and enjoying. Today i am going to share a new tutorial which is Interfacing Arduino with HC05 Bluetooth module. First of all lets have a little introduction about HC-05 Bluetooth module. HC-05 is a bluetooth module, which was designed for wireless data communication. This little module is capable of both sending and receiving data but it performs only one thing at a time, which means at a particular time it can only send or receive data but can't do the both tasks.

In order to send or to receive data, you have to make one module as a master and the other module as a slave. If both the modules are acting as master then, data will not transmit and if both the modules are acting as a slave then, again data will not transmit or receive. The hardware of Bluetooth module contains a large no of features. For example it is much sensitive and it is sensitive up to -80dBm and it catches a Bluetooth signal even from far away. If you wish to transmit data through it then, it also have much power to transmit data to a wider range. You can image its transmitting power from the digits that it has transmitting power of +4dBm. This module operates on a low voltages, that's why the power rating of this module is very low. The hardware of the module comes with a integrated antenna and also its hardware contains edged pins. These edged pins gives us the ease that it becomes very easy to plug in or plug out the wires. and also if you are going to use it within a circuit then, it becomes very easy to connect the cable with module. Above was a little introduction about Bluetooth module and its features. now lets move to the basic theme of our project, which is to do interfacing between arduino and HC-05.

Note:

  • If you have HC-06 or any other module in HC series then you don't need to get worried as they all work quite same. So you can also follow this tutorial for other HC series bluetooth modules.

Pin Configuration of HC-05

HC-05 Bluetooth module has total 6 pins. A simple HC-05  Bluetooth module is shown in the image given below and you can also see its pin configuration from this image. The pin configuration and the purpose of each pin is listed below as:

  1. They pin#1 is abbreviated a KEY pin. The function of this key is to show paired devices. In HC-05 module this pin is used to perform the module in AT mode.
  2. Pin#2 of HC-05  module is named as VCC pin. This module requires 3.3 volts to operate. If you will connect it directly with 5 volts then, this module will burn out.
  3. Pin#3 of this module is named as GND. At this pin the common ground of the circuit is provided.
  4. pin#4 is named as TXD. This pin is used when you have to transmit data to some external device. Asynchronous data transfer is performed by this module.
  5. pin#5 is named as RXD. This pin is used when the module have to receive wireless data from some external source. Asynchronous data is received through this module.
  6. The last pin of the module which is in fact pin#6 of the module and it is named as STATUS pin. The basic function of this pin is to check the status of the Bluetooth module. If the module is connected to some other device then, output of the system becomes HIGH and if the connection of Bluetooth drops then, this module generates a output pulse.

Interfacing with Arduino

So, now let's start with interfacing Arduino with HC05 bluetooth module. Its quite easy to interface as it works on Serial protocol. As mentioned above it has two pins named as TX and RX through which we can send or receive the data. Moreover, it works exactly the same as any mobile's bluetooth, you can connect your mobile with any device and can share data between these devices, similarly you can share the data with this device as well.
  • First of all, connect your HC05 bluetooth module with Arduino as shown in the below figure.
  • In the above figure, the connections are quite easy , we have provided power to the bluetooth module from Arduino and also connected TX pin of bluetooth module with RX pin of Arduino and RX pin of bluetooth module with TX of Arduino.
  • Now we are done with the connections so next part is to upload the code into Arduino.

Code for interfacing HC-05 with Arduino

Now upload the below code into your Arduino and you are ready to get the first data from your Bluetooth module.

Applications of HC-05 Module

  • The biggest application is that it is used to transmit or receive data wirelessly.
  • You can play your favorite sound tracks through bluetooth in your car using this module.
  • The modern Android phones contains a wireless GPS option. IN fact this module is being used in that phones and it works to seek the bluetooth location.
  • This module makes you able to chat with some android phone using Bluetooth.
Alright friends, that all for today. If you have any question, fell free to ask. Till next tutorial Take Care!!! :)

JRC4558 Op-Amp Datasheet, Pinout, Features, Alternatives & Applications

Hi Guys! Happy to see you around. I welcome you on board. Thank you for clicking this read. In this post today, I’ll walk you through the Introduction to JRC4558.

The JRC4558 is a single silicon-chip monolithic dual operational amplifier. This amplifier is a high-performance device and is internally compensated. It is widely used in sample and hold amplifiers and pedal circuit designs. The JRC4558 is available with a remarkable input impedance of around 5 MO, a high voltage gain of around 100 dB, and a good slew rate of around 1.7V/µs.

I suggest you buckle up as I will walk you through the complete introduction to JRC4558 covering datasheet, pinout, features, alternatives, and applications. Let’s jump right in.

Introduction to JRC4558

  • The JRC4558 is a single silicon-chip monolithic dual operational amplifier that comes with high voltage gain and good input impedance.
  • It is applied in portable instrumentation and Intrusion Alarm Systems.
  • There are a total of eight pins incorporated on the device, where PIN 8 is the voltage supply pin and pin no 4 is the ground pin. And you’ll get two outputs at the same time.
  • There are two inputs i.e. input A and input B and both inputs contain one inverting input (-) with Voltage V- and non-inverting input (+) with voltage V+.
  • The ideal op-amps are different from the real op-amps used in this chip. The ideal op-amp comes with infinite gain while the voltage gain of this device is finite and is around 100dB.
  • The slew rate of this device is around 1.7V/µs which is achieved when the output voltage of the amplifier reaches its maximum rate of change.
  • This chip is incorporated with two independent, good input impedance and internally frequency compensated operational amplifiers that are carefully designed to run over a wide range of voltages from a single power supply.
  • The JRC4558 produces an output signal that is much larger than the potential difference at the input.
  • It is also applied in general-purpose operational amplifier circuits like differential amplification, comparators, and mathematical operations.
  • This device is carefully designed and requires only a 5V standard voltage supply to operate in electronic circuits. You don’t need to include an additional -5V supply to run this device.
  • Moreover, it is also employed in single-supply voltage systems, amplification blocks, and transducer amplifiers.
  • This device is capable of performing two different operations at the same time as it incorporates two op-amps on board.
  • The versatility of this device makes it a good pick for analog circuits.
  • It is widely used in scientific devices and industrial and consumer applications.
  • This device can be used individually or as a component of most complex integrated circuits.

JRC4558 Datasheet

Before applying this device to your electrical project, it’s wise to go through the datasheet of the component that contains the main characteristics of the component. Click the link below and download the datasheet of JRC4558.

JRC4558 Pinout

The following figure shows the pinout diagram of JRC4558.

The JRC4558 comes with a total of 8 pins as mentioned below in the table.

Pin Description of JRC4558
Pin No. Pin Description Pin Name
1 The output pin of Op-amp A OUT (A)
2 The Inverting input pin of the Op-Amp A Inverting Input (A)
3 The Non-Inverting Input Pin of Op-Amp A Non- Inverting Input (A)
4 Ground or Negative supply terminal Power (-Vs)
5 The non-inverting Input Pin of Op-Amp B Reference
6 The Inverting input pin of the Op-Amp B Output
7 The output pin of Op-amp B Power (+Vs)
8 Positive supply terminal +VS

JRC4558 Features

The following are the main features of the JRC4558.

  • No. of Amplifiers = 2
  • Voltage Gain = 100 dB
  • Device Slew Rate = 1.7V/µs
  • Input Impedance = 5 MO
  • Available Bandwidth = 3MHz
  • Operating Temperature Max = 70°C
  • Supply Voltage Range = ± 5V to ± 15V
  • of Pins on the component = 8
  • Operating Temperature Min = 0°C
  • Available Package = 8-Pin DIP and SOP Package

JRC 4558 Alternatives

The following are the alternatives to JRC4558.

  • LM158
  • LM358
  • LM358A
  • LM2904Q
  • LM158A
  • LM2904
  • LM747
  • LM4558

JRC4558 Applications

The JRC4558 is used in the following applications.

  • Applied in Sample and Hold Amplifiers
  • Used in Portable Instrumentation
  • Employed in Instrumentation Amplifiers
  • Used in Long-Duration Timers/Multivibrators
  • Incorporated in Intrusion Alarm System
  • Employed in Photocurrent Instrumentation
  • Used in Comparators and Function Generators

That’s all for today. I hope you’ve enjoyed reading this article. If you are unsure or have any queries, you can pop your question in the section below. I’d love to help you the best way I can. Feel free to share your valuable suggestions and feedback around the content we share, so we keep sharing quality content customized to your exact needs and requirements. Thank you for reading the article.

LM2576 Buck Converter Datasheet, Pinout, Features & Applications

Hi Everyone! I welcome you on board. Thank you for clicking this read. In this post today, I’ll walk you through the Introduction to LM2576.

LM2576 is a step-down voltage regulator, also known as a buck converter, mainly employed as a pre-regulator in linear regulators. The customized output version of this buck converter gives you the ability to set the output voltage as you like better. It is available with a remarkably good load and line regulation. Moreover, it is used to drive load under 1A and is available in fixed output voltages with 3.3V, 5V, 12V, and 15V.

I suggest you buckle up and read this post all the way through, as in this post I’ll detail the Introduction to LM2576 covering the datasheet, pinout, features, and applications. Let’s jump right in.

Introduction to LM2576

  • LM2576 is a voltage regulator, also called a buck converter, mainly used as a pre-regulator in linear regulators.
  • It is a simplified version of switching power supplies where it houses all functions needed to step down the circuit voltage.

  • This buck converter comes with an integrated switch that drives load under 1A.
  • LM2576 is available with remarkable load regulation and load line.
  • LM2576 is available in two versions: version with fixed output voltage featuring 3.3V, 5V, 12V, & 15V and version with adjustable output that comes with the ability to choose your desired output.
  • It is also known as the DC-to-DC power converter mainly used to step down the voltage from the input supply to its output load. The current is increased during this occurrence of voltage regulation.
  • This buck converter comes with a fixed-frequency oscillator of around 52 kHz. It is also available with an in-built frequency compensation method.
  • Frequency compensation is used to minimize the oscillation and vibration in the electrical circuit. Resistance-capacitance networks are applied for this frequency method to work.
  • Apart from the excellent load and line regulation, this component is available with a manual shutdown option using an external ON/OFF pin.

LM2576 Datasheet

Before you apply this component to your electrical project, it’s better to go through the datasheet of the component that features the main characteristics of the device. You can download the datasheet of LM2576 by clicking the link below.

LM2576 Pinout

The following figure shows the pinout diagram of lm2576.

LM2576 is available with five terminals:

  1. ON/OFF: This pin is used to shut down the voltage regulator when the input supply current is decreased to 50uA. The threshold voltage is 1.3V. When the voltage on this pin is set to below the threshold voltage, it will turn on the voltage regulator. When the voltage on this pin goes above the threshold voltage it will turn off the device. And when this pin is connected to the ground or leave it open, it will remove the shutdown feature from the device. Whether you connect this pin to the ground or leave it open, in both cases the regulator remains turned on.
  2. VIN: This pin is connected to the bypass capacitor that reduces the voltage transients along with providing the switching current.
  3. Output: This terminal behaves like an internal switch where voltage potential goes back and forth between (Vin – Vsat) and -0.5V. The Vout/Vin is this pin duty cycle. The coupling is reduced due to the presence of PCB copper attached to this pin.
  4. Ground: This is the ground pin.
  5. Feedback: For the feedback loop, this pin defines the regulated output voltage.

LM2576 Features

The following are the main features of LM2576.

  • Output Voltage available for variable type regulator = 1.23V to 37V
  • Internal Oscillator frequency = 52-kHz (this is a Fixed Frequency)
  • Output Current = 3A
  • Used as a switch-mode step-down voltage regulator
  • Comes with In-built Current Limit and Thermal Shutdown Protection
  • Output Voltage available for fixed voltage regulator = 3.3V, 5V, 12V or 15V
  • Maximum Input Voltage =  40V
  • Available packages = TO-263 & TO-220

LM2576 Applications

The following are the main applications of LM2576.

  • Incorporated as a pre-regulator in linear regulator
  • Used in On-card switching regulators.
  • Employed to drive load under 1A.
  • Employed in a simple efficient step-down regulator.
  • Used in a positive-to-negative converter.

That was all about the Introduction to LM2576. Hope you’ve enjoyed reading this article. If you have any queries, you can pop your question in the section below, I’d love to help you the best way I can. Feel free to share your valuable feedback and suggestions around the content we share, so we keep producing quality content customized to your exact needs and requirements. Thank you for reading the article.

1n4734 Zener Diode Datasheet, Pinout, Features & Applications

Hi Folks! I hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the Introduction to 1n4734.

The 1n4734 is a silicon planner power Zener diode that is employed as a low current voltage regulator. It is incorporated as a shunt regulator in many applications. This Zener diode conducts the current in both directions in contrast to the regular diode that conducts in one direction only i.e. regular diode conducts in forward biased condition only. This Zener diode conducts in both conditions forward biased condition and reverse biased condition. Power dissipation in this Zener diode is 1W and standard Zener voltage tolerance is ±10%.

I suggest you read this entire post till the end, as I’ll detail the complete Introduction to 1n4734 covering datasheet, pinout, main features, and applications. Let’s dive in.

Introduction to 1N4734

  • The 1n4734 is a Zener diode employed as a low-current voltage regulator. It is also employed in clipping circuits with high power ratings. This Zener diode is made of semiconductors and is used in voltage protection circuits.

  • The current flows from the anode side to the cathode side in the regular diode in a forward-biased condition. On the other hand, in the case of the Zener diode, current conducts in both conditions i.e. forward biased condition and reverse biased condition. Forcing regular diodes to conduct in both conditions will damage the device.
  • The Zener diode is normally used in modern electronics and is constructed by plenty of different voltages.
  • While picking the Zener diode there are two parameters that you should consider… one is the power dissipation and the other is the power Zener voltage. When a higher reverse voltage is applied to the Zener device it creates the Zener voltage.
  • Some Zener diodes experience sharp and highly doped p-n junction when they undergo a Zener effect or Clarence Zener.
  • The power dissipation inside the Zener diode is used to identify the amount of current flow. More power dissipation results in more current flow. Power dissipation in this Zener diode is 1W.
  • Zener diodes are utilized to generate low-power supply rails using higher voltages. Reference voltages in the electrical circuits are also produced by these Zener diodes.
  • In some electrical circuits, there is a limit to the applied voltage. The voltage applied above this limit can damage the device. These Zener diodes are used in those circuits to prevent circuits from overvoltage.

1N4734 Datasheet

Before you apply this component to your project, it’s wise to have a look at the datasheet of the component that contains the main characteristics of the device. Click the link below if you want to download the datasheet of 1n4734.

1N4734 Pinout

The following figure shows the pinout diagram of 1n4734.
  • The 1n4734 comes with two terminals named anode and cathode. The anode terminal is positive while the cathode terminal is negative.
  • The current enters the diode through the positive anode terminal while the current leaves the diode through the negative cathode terminal.
  • The current flows in both conditions in 1n4734 i.e. forward biased condition and reverse biased condition.

1N4734 Features

The following are the main features of the 1n4734 Zener diode.
  • Package = DO-41
  • Zener Voltage (VZ) = 5.1V
  • Used as shunt regulators.
  • Power dissipation (PZ) = 1W
  • Zener regulator current (Izt) = 49mA

1n4734 Applications

  • Used in voltage protection circuits.
  • Used as voltage protection for Microcontrollers.
  • Used as a low current voltage regulator.
  • Used for clipping circuits with high power ratings.
  • Used in voltage stabilizing circuits.

That’s all for today. I hope you’ve enjoyed reading this article. If you’re unsure or have any questions, you can ask me in the section below, I’d love to help you the best way I can. Feel free to share your thoughts and feedback around the content we share, so we keep sharing quality content customized to your needs and requirements. Thank you for reading the article.

Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir