Hi learners! I hope you are doing great. Today, I am going to share the second version(V2.0) of the LCD library for Proteus. We have already shared the LCD V1.0 Library on our blog. Along with appreciation, we also get some complaints/suggestions about that library. So, we have designed a better version of the LCD library by keeping the suggestions in mind.
Version 2.0 has error-free working, better pinout prints, and is identical to the real-world LCD. We have also removed our website link from the LCD. This library includes two alphanumeric LCDs in it i.e. LCD 16x2 and LCD 20x4.
If you don't have any experience with the LCD, no need to worry as we will guide you from scratch. Before installing the LCD, let's first have a look at its brief introduction:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | LCD 16x2 | Amazon | Buy Now | |
4 | LCD 20x4 | Amazon | Buy Now | |
5 | PIR Sensor | Amazon | Buy Now | |
6 | Arduino Uno | Amazon | Buy Now |
Let's have a look at the pinout of LCD:
Both of these LCDs(16x2 and 20x4) have similar pinouts and a simple basic circuit needs to be designed in order to operate them. There are a total of 16 pins present in LCD used for different purposes. The below table has the complete description of LCD Pinout:
Serial |
Pin |
Functionality |
Description |
1 |
VSS |
Ground |
This pin is connected to the ground terminal of the circuit. |
2 |
VDD |
Power Supply |
It is connected to the positive voltage(+5V) and is responsible for the power supply to all pins. |
3 |
VEE |
Voltage Emitter |
It is used to control the contrast of LCD. it applies the negative voltage and thus controls the electric field of the LCD. |
4 |
RS |
Register Select |
It selects the LCD register. LCD has two registers: an instruction register and a data register. |
5 |
RW |
Read or write |
The read-and-write operation is done through this pin. if set to HIGH then LCD is in reading mode and LOW means it is writing the data. |
6 |
E |
Enable |
Enables the working of LCD. If HIGH then allow the display and if LOW then disable it. |
7-14 |
D0-D7 |
Data bits (Pins to deal with the data) |
Data is sent to the LCD in a parallel manner. These pins send this data and out of these, D0 is the least significant and D7 is the most significant. |
The installation of the LCD V2.0 is simple. The first step is to download the library files. I believe you have Proteus installed. So, click the below button to download the Proteus Library zip file.
The zip file also contains the project, where we simply connected both the LCDs with Arduino, so that you could check their working. Moreover, code is also present in the file.
Once the Library is installed, you need to open your Proteus software. If it's already open, you have to restart it. Now follow the instructions.
I have installed both versions therefore, I am getting four options. I will choose the LCD 20X4 V2.0 and LCD 16X2 V2.0.
Click on the components and simply place them on the working sheet of Proteus, it will appear as shown below:
Now, let's design an LCD simulation in Proteus:
Now, let's design a simple LCD simulation, where we will interface it with an Arduino UNO board. We will display our website's link on the LCD. So, let's design the circuit:
Go to the pick library and select the following components:
Now let's design the Arduino code to display data on these LCDs:
Now, open your Arduino software, I hope you have it installed. Paste the below code in it, I have also added this code in the zip file.
#include
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.setCursor(1,0);
lcd.print("www.TheEngineering");
lcd.setCursor(4,1);
lcd.print("Projects.com");
}
void loop() {
}
The next step is to get the Hex File from Arduino IDE and add in the Proteus. For this, follow these steps:
If you have followed all the steps, I am sure your project will run successfully. I hope it was helpful to you. You must practice it more and try to make different projects. So, that was all for today, will meet you guys in the next tutorial. Take care!!!
Hello friends, I hope you all are having fun. In today's tutorial, I am going to share a new Proteus library for Raspberry Pi 2. We have already shared the Proteus Libraries of other Raspberry Pi modules i.e. Raspberry Pi 4, 3, Pico etc. and we discussed that these Pi modules won't be able to read the Python code. We have just designed the external appearance of these modules and you can use these Pi modules for circuit designing and project presentations.
We have also added the Arduino firmware in these boards, which is just to provide a bit of interaction with these boards. We have given these boards an unofficial title "Arduino Pi".
So, let's have a look at How to simulate Raspberry Pi in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | LCD 16x2 | Amazon | Buy Now | |
5 | LCD 20x4 | Amazon | Buy Now | |
6 | PIR Sensor | Amazon | Buy Now |
Raspberry Pi 2 Library for Proteus
Note: For a better understanding, you should read How to Add a New Library File in Proteus.
Note: Its design is quite similar to that of Raspberry Pi 3, although we added the name to differentiate between the two.
As mentioned above, this Pi board won't be able to read the Python code. So, we have added the Arduino firmware in it to make it a bit more interactive. So, let's blink an LED with this Raspberry Pi 2 module in Proteus:
So, that was all for today. I hope you have enjoyed these Raspberry Pi simulated modules. IF have any questions, please ask in the comments. Thanks for reading.
Hello friends, I hope you all are doing great. As we are working on Raspberry Pi libraries for Proteus these days, so today, I am going to share another awesome library i.e. Raspberry Pi Zero W Libary for Proteus. We have already shared the Raspberry Pi Pico, Raspberry Pi 3 & Raspberry Pi 4 Libraries for Proteus, I hope you have already installed these libraries.
We have only designed the exterior look of this module, it won't be able to read the Python code. You can use this module to design circuit diagrams of your projects or to demonstrate your project in the presentation. Although, just for fun, we have added the Arduino UNO firmware to it. So, you can add the Arduino hex file in it. Something is better than nothing.
So, let's install the Proteus Library and simulate Raspberry Pi Zero:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi Zero | Amazon | Buy Now |
Raspberry Pi Zero W Library for Proteus
Note: For a better understanding, you should read How to Add a New Library File in Proteus.
As I mentioned earlier, this RPi Zero module in Proteus won't be able to read the Python code. So, just for fun, we have added the Arduino firmware inside. I know it's not that helpful but that's all we have right now. I hope we will design the real Raspberry Pi Zero simulator one day. So, let's add the Hex File in Raspberry Pi Zero W:
Let's clear this thing up one last time, we can't add Python code in this simulated Raspberry Pi Zero, so just to have some interaction, we have added the Arduino Hex file in it. So, we need to get the Arduino hex file.
So, that was all for today. I hope you will enjoy this Raspberry Pi Zero W Library for Proteus. If having any difficulty, ask in the comments. Thanks for reading. Have a good day.
Hello friends, I hope you all are doing great. Today, I am going to share the Raspberry Pi 4 Library for Proteus. In our previous tutorial, we shared the Raspberry Pi 3 Library for Proteus and as we mentioned in that tutorial, these Raspberry Pi libraries will have dummy modules i.e. We have just designed the exterior but these boards won't be able to read the Python code. Although just for fun, we have added the Arduino firmware in these boards, so we can upload the Arduino code in it. As the legends say, something is better than nothing. We have given these boards an unofficial name "Arduino Pi".
You can use these Pi boards to design your circuit diagram or can also use it in your presentation/demonstration of your projects. I hope you will enjoy these simulated Raspberry Pi boards. Before going forward, let's first have a brief overview of Raspberry Pi 4:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi 4 | Amazon | Buy Now |
So, now let's have a look at How to add this Proteus library and simulate Raspberry Pi 4 in Proteus.
Raspberry Pi 4 Library for Proteus
Now let's design the Simulation of Raspberry Pi 4 in Proteus. As I mentioned earlier, we can't feed Python code to this RPi4 board. So, we have added the Arduino firmware to it. Thus, we need to upload the Arduino hex file in it. Let's attach an LED with Raspberry Pi 4:
So, that was all for today. I hope you will enjoy this Raspberry Pi 4 Library for Proteus and will use it in your projects. Let me know your feedback. Have a good day. Take care!!!
Hello friends, I hope you all are doing great. In today's tutorial, I am going to share a new Proteus Library for Raspberry Pi 3 module. In my previous tutorial, I shared the Raspberry Pi Pico Library for Proteus. Similar to Pico Library, this RPi3 LIbrary won't operate on the Python code. We have just designed the front look to use in the circuit design. Although, we can upload Arduino code to these simulated Raspberry Pi boards.
This Raspberry Pi Proteus Library will have only the Raspberry Pi 3 board in it. We will design the other Pi boards soon. So, let's have a look at How to simulate Raspberry Pi in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi 3 | Amazon | Buy Now |
First of all, we need to download the Raspberry Pi library files, by clicking the below button:
Raspberry Pi 3 Library for Proteus
Note: Look at How to add a new Library in Proteus 8, if you are having any issues.
Now we are going to simulate this Raspberry Pi 3 board in Proteus. We will attach a simple LED to one of its pins. As I told earlier, we have just designed the exterior of this board. It won't read the Python code. We can use it to design circuit diagrams for our project. But just for fun, we have added the Arduino firmware to it. So, we can upload the Arduino hex file in this Pi board.
Now, let's run our simulation to get the results:
So, that was all for today. I hope you will use this Raspberry Pi Library to design your projects. In the next tutorial, I will share the Raspberry Pi 4 Proteus Library. Till then, take care. Have fun!!!
Hello friends, I hope you all are fine. In today's tutorial, I am going to share the Raspberry Pi Pico Library for Proteus. It's a dummy library, we have just designed the display. We can't add the Python Code to it, but we can make it work with Arduino code. A mixture of Arduino and Raspberry Pi, I have given it an unofficial name "Arduino Pi". It's better to have something than nothing. You can design circuit diagrams using this library and can also demonstrate your project in presentations by designing simulations.
So, let's have a look at How to simulate Raspberry Pi Pico by adding this Proteus Library:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi Pico | Amazon | Buy Now |
Raspberry Pi Pico Library for Proteus
Note: Look at How to add a new Library in Proteus 8, if you are having any issues.
We have tried to keep it small in size so that other components could get more space.
As I told earlier, we can't program this Pico board with Python, which is the actual programming language of this board. But just for fun, we have enabled it to read the Arduino code. Let's design a simple blink example to see how it works:
Now let's run our simulation to check the results:
So, that was all for today. I hope you will enjoy this Raspberry Pi Pico Library for Proteus and will use it in your simulations. If you have any suggestions, use the below comment form. Thanks for reading. Take care!!!
Hello friends, I hope you all are doing well. In today's tutorial, I am going to share a new Proteus Library of ESP32 embedded module. ESP32 is a microcontroller board used mostly in IoT projects. It's a successor of ESP8266 or NodeMCU. We have already shared the NodeMCU Library for Proteus and I hope you guys have enjoyed it.
Proteus software is not capable of handling WiFi or BLE technology, thus we can't implement these technologies in the ESP32 board. Though, you can use its input/output pins to interface embedded sensors and modules. You can also use it to design the Circuit Diagram of your Project.
So, let's have a look at How to simulate ESP32 board in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | ESP32 | Amazon | Buy Now |
Note: Look at How to add new Library in Proteus 8, if you don't know already.
So, using this ESP32 Library, we have added the board in Proteus software. Now, let's simulate ESP32 in Proteus:
We are going to simulate the ESP32 board by running Blink LED Example. As I told earlier, we can't add WiFi and BLE capabilities in this simulated ESP32 board. So, we are going to select Arduino UNO in the board section of Arduino IDE to get the hex file.
So, that was all for today. I hope you have enjoyed simulating ESP32 board in Proteus software. If you have any questions, ask in the comments. Till the next tutorial, take care. Have fun !!!
Hello friends, I hope you all are doing great. In today's tutorial, I will share a Proteus Library of another embedded module i.e. NodeMCU. NodeMCU is a microcontroller board and if you are new to this board, you should read Introduction to NodeMCU to get your hands dirty. NodeMCU is not present in the components library of Proteus and using this library you can easily simulate NodeMCU in Proteus.
We can't add WiFi and BLE capabilities to our module in the Proteus software, that's why it will just perform the basic functions i.e. sensors interfacing, PWM, I/O control etc. So, you can use it for simple code testing and can also use it to design circuit diagrams of your projects.
So, let's have a look at How to download NodeMCU Proteus Library and simulate it:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | ESP8266 | Amazon | Buy Now |
Note: Look at How to add new Library in Proteus 8, if you don't know already.
So, we have successfully added the NodeMCU module to our Proteus software. Now let's simulate NodeMCU and for that, I am going to use the blink example:
Note: As you can see in the above code, we have selected Arduino UNO in the boards' section. As I have told earlier, this NodeMCU module is only going to use its pins, we can't add WiFi or BLE capabilities in the Proteus software. So, while compiling the code, select Arduino UNO board. Something is better than nothing.
So, that's how you can easily simulate NodeMCU in the Proteus software. If you have any questions, please ask in the comments. I will resolve them as soon as possible. In the next tutorial, we will share the ESP32 Library for Proteus. Till then take care and have fun!!!
Hi Friends! Hope you’re well today. Today, I am going to share the Proteus Library of Current Sensor WCS1600. This sensor is not available in the Proteus Components Library and we’re sharing it for the first time.
The Current Sensor WCS1600 is used to measure the current flowing through the circuit and is used in embedded systems and robotics projects. If you are new to this sensor, you must first design its simulation before playing with the hardware.
Before we move further, let’s have a brief overview of WCS1600 Current Sensor:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | LEDs | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | ACS712 | Amazon | Buy Now |
WCS1600 comes with a drift linear hall sensor IC which gives precise and accurate values. The hall sensor IC is 9.0 mm in diameter through the hole and is incorporated with a temperature compensation circuit. To measure the passing current, the electric wire of the system should pass through the hole of this sensor.
Using this design, the system designers can monitor the current path of any length without affecting the layout of the original system. The integrated hall IC senses the magnetic field generated when current flows through the wire. That magnetic field is then converted into a proportional voltage.
WCS1600 Current Sensor Library for Proteus
Note: You should read How to Add Library in Proteus 8, if you are having any issues finding the Library Folder.
In the components section, write ‘WCS1600 Current Sensor’ in the search bar and you’ll get the following result:
Now place this sensor in the Proteus workspace, as shown in the below figure:
You can see in the above figure, this current sensor carries 4 pins as follow:
Now double-click the sensor to open up its Properties Panel, as shown in the below figure:
Go to the ‘Program File’ section and browse for the file WCS1600TEP.HEX which you have already downloaded and placed in the Library Folder of Proteus.
That’s all for today. Hope you’ve found this Library for Proteus useful. If you’re unsure or have any queries regarding the simulation of this sensor and how to use it in your engineering projects, you are welcome to get in touch with me in the section below. I’ll help you the best way I can. Thank you for reading this tutorial.
Thank you for being here for today's tutorial of our in-depth Raspberry Pi programming tutorial. The previous tutorial taught us how to install a PIR sensor on a Raspberry Pi 4 to create a motion detector. However, this tutorial will teach you how to connect a single seven-segment display to a Raspberry Pi 4. In the following sections, we will show you how to connect a Raspberry Pi to a 4-digit Seven-Segment Display Module so that the time can be shown on it.
Seven-segment displays are a simple type of Display that use eight light-emitting diodes to show off decimal numbers. It's common to find it in gadgets like digital clocks, calculators, and electronic meters that show numbers. Raspberry Pi, built around an ARM chip, is widely acknowledged as an excellent Development Platform. Its strong processing power can do amazing things in the hands of electronics enthusiasts and students. If we can figure out how to have it talk to the outside world and process data via an output, then we'll have a real chance of accomplishing all this. We analyze the data by viewing it on an LCD screen or other Display. Numerous sensors can detect specific parameters in the physical world and convert them to the digital world. It would never make sense to utilize a PI LCD panel to display a minimal quantity of information. Here, a 7-Segment or 16x2-Alphanumeric LCD panel is the preferred method of presentation.
There are few uses for a 7-segment display that don't need an LCD panel, even though a 16x2 LCD is preferable in most. If all you need to do is show some numbers, then an LCD, which has the downside of having a small character size, is excessive. Compared to a regular LCD screen, seven segments have the upper hand in dim environments and can be seen from wider angles. Let's get started.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Breadboard | Amazon | Buy Now | |
2 | Jumper Wires | Amazon | Buy Now | |
3 | Raspberry Pi 4 | Amazon | Buy Now |
Jumper wires
Seven segment display
1KΩresistors
Breadboard
The seven segments of a 7 Segment Display are each lit up by an individual LED to show the digits. To show the number 5, for example, you would make the glow pins for segments a, f, g, c, and d on the 7-segment high. This particular 7-segment display is a Common Cathode version, although there is also a Common Anode version.
The wiring diagram for connecting a 7-segment display to a Raspberry Pi is shown below. Here, 7-Segment Common Cathode has been utilized.
So, we'll simulate an 8-bit PORT on PI using its eight GPIO pins. Here, GPIO12 is the Most Significant Bit (MSB), while GPIO13 is the Least Significant Bit (LSB) (Most Significant Bit).
If we wish to show the number 1, we must activate both segments B and C. We must supply voltage to GPIO6 and GPIO16 to power segments B and C. Accordingly, the hexadecimal value of "PORT" is "06," and the byte value of "PORT" is "0b00000110." If we raise both pins to their highest positions, the number "1" will be shown.
The value for every displayable digit has been recorded and saved in a Character String with the label 'DISPLAY .'We have then used the Function 'PORT' to call those values one at a time and display the relevant digit.
Once everything is wired up according to the schematic, we can power up the PI and begin using PYTHON to write the program. Below is a function that allows us to program the GPIO pins on the PI, and we'll go over the few commands we'll be using in the PYTHON program to do so. We are also changing the name of the GPIO pins in the hardware from "GPIO" to "IO," which will be used throughout the code.
import RPi.GPIO as IO
The general-purpose input/output (GPIO) pins we need to use may be occupied with other tasks. If that's the case, the program's execution will be interrupted by warnings. The below command instructs the PI to continue running the software regardless of the warnings.
IO.setwarnings(False)
Pin numbers on the board and pin functions can be used to refer to PI's GPIOs. This GPIO5 is similar to the one labeled "PIN 29" on the board. Here we specify whether the number 29 or the number 5 will stand in for the pin.
IO.setmode (IO.BCM)
To use the LCD's data and control pins, we have assigned those functions to eight of the GPIO pins.
IO.setup(13,IO.OUT)
IO.setup(6,IO.OUT)
IO.setup(16,IO.OUT)
IO.setup(20,IO.OUT)
IO.setup(21,IO.OUT)
IO.setup(19,IO.OUT)
IO.setup(26,IO.OUT)
IO.setup(12,IO.OUT)
If the condition between the brackets evaluates to true, the looped statements will be run once. The value of PIN13 would be HIGH if and only if bit0 of the 8-bit 'pin' is true. There are eight 'if else' conditions, one for each of bits 0 through 7, so that each LED in the seven-segment Display can be set to either the High or Low state, depending on the value of the corresponding bit.
if(pin&0x01 == 0x01):
IO.output(13,1)
else:
IO.output(13,0)
As x increases from 0 to 9, the loop will be run 10 times for each command.
for x in range(10):
The following command can create an infinite loop, with which the statements included within the loop will be run repeatedly.
While 1:
All other commands and functions have been commented on in the following code.
import RPi.GPIO as IO # calling for the header file, which helps us use GPIO's of PI
import time # calling for time to provide delays in the program
DISPLAY = [0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x67] # string of characters storing PORT values for each digit.
IO.setwarnings(False) # do not show any warnings.
IO.setmode (IO.BCM) # programming the GPIO by BCM pin numbers. (like PIN29 as‘GPIO5’)
IO.setup(13,IO.OUT) # initialize GPIO Pins as outputs
IO.setup(6,IO.OUT)
IO.setup(16,IO.OUT)
IO.setup(20,IO.OUT)
IO.setup(21,IO.OUT)
IO.setup(19,IO.OUT)
IO.setup(26,IO.OUT)
IO.setup(12,IO.OUT)
def PORT(pin): # assigning GPIO logic by taking the 'pin' value
if(pin&0x01 == 0x01):
IO.output(13,1) # if bit0 of 8bit 'pin' is true, pull PIN13 high
else:
IO.output(13,0) # if bit0 of 8bit 'pin' is false, pull PIN13 low
if(pin&0x02 == 0x02):
IO.output(6,1) # if bit1 of 8bit 'pin' is true, pull PIN6 high
else:
IO.output(6,0) #if bit1 of 8bit 'pin' is false, pull PIN6 low
if(pin&0x04 == 0x04):
IO.output(16,1)
else:
IO.output(16,0)
if(pin&0x08 == 0x08):
IO.output(20,1)
else:
IO.output(20,0)
if(pin&0x10 == 0x10):
IO.output(21,1)
else:
IO.output(21,0)
if(pin&0x20 == 0x20):
IO.output(19,1)
else:
IO.output(19,0)
if(pin&0x40 == 0x40):
IO.output(26,1)
else:
IO.output(26,0)
if(pin&0x80 == 0x80):
IO.output(12,1) # if bit7 of 8bit 'pin' is true, pull PIN12 high
else:
IO.output(12,0) # if bit7 of 8bit 'pin' is false, pull PIN12 low
While 1:
for x in range(10): # execute the loop ten times incrementing x value from zero to nine
pin = DISPLAY[x] # assigning value to 'pin' for each digit
PORT(pin); # showing each digit on display
time.sleep(1)
The process of displaying a single number character on a 7-segment display is complete. However, we'd need more than a single 7-segment display to express information with more than one digit. Therefore, we will use a 4-digit seven-segment display circuit for this session.
Four individual Seven-Segment Displays have been linked up here. For a 4-digit 7-segment display, we know that each module will have 10 pins, so there will be 40 pins total. Soldering that many pins onto a dot board would be a hassle for anyone; thus, I recommend that anyone using a 7-segment display do so by purchasing a module or creating their PCB. See below for a diagram of the relevant connections:
In the preceding diagrams, we can see that the A-lines of all four displays are linked together as one A, and the same is true for B, C.... up until DP, which is essential for understanding how the 4-digit seven-segment module functions. Put another way, if trigger A is activated, the state of all 4 A's should be high.
Nonetheless, this never occurs. The four extra pins labeled D0 through D3 (D0, D1, D2, and D3) let us select which of the four displays is driven high. As an illustration, if I want my output to appear solely on the second Display, I would set D1 to high and leave D0, D2, and D3 at low. Using pins D0–D3 and A–DP, we can easily choose which displays should be on and which characters should be shown.
Let's check the many options for interfacing this 4-digit seven-segment Display with the Raspberry Pi. As can be seen in the diagram below, there are 16 pins on the 7-segment module. Even if your module's resources are limited, it will provide at least the following.
Segmented pins, either 7 or 8 segments (pins 1 to 8)
Pin holder to the ground (here pin 11)
A 4-digit code to unlock the door (pins 13 to 16)
See below for the wiring diagram of a digital clock built with a Raspberry Pi and a 4-digit Seven-segment display module:
You can also use the following table to ensure your connections are correct and follow the diagrams.
Locating the module's pins is the first step in making electrical connections. Identifying the Raspberry Pi's GPIO pins can be tricky; I've included an image to help.
Here, RPi is programmed in the Python programming language. The Raspberry Pi can be programmed in a wide variety of ways. Since Python 3 has become the de facto standard, we've opted to use that version as our integrated development environment (IDE). At the bottom of this guide, you'll find the whole Python code.
We'll go over the PYTHON instructions we'll be using for this project: first, we'll import the library's GPIO file; next, using the below function, we'll be able to program the Pi 4's GPIO pins. We are also changing the name of the GPIO pins in the hardware from "GPIO" to "IO," which will be used throughout the code. We've brought in time and DateTime to get the current time from Rasp Pi.
import RPi.GPIO as GPIO
import time, DateTime
The GPIO pins we're trying to use are already being used for something else. The program's execution will be interrupted with warnings if this is the case. The PI will be instructed to disregard the errors and continue with the software using the below command.
IO.setwarnings(False)
The physical pin number and the corresponding function number can refer to PI's GPIOs. As with 'PIN 29,' GPIO5 is a physical component on the circuit board. In this case, we specify whether the number "29" or "5" will stand in for the pin. GPIO. In BCM notation, GPIO5 pin 29 will be represented by a 5.
IO.setmode (GPIO.BCM)
As is customary, we'll start by setting the pins to their default values; in this case, both the segment and digit pins will be used as outputs. In our code, we organize the segment pins into arrays and set their values to zero by declaring them to be GPIO.OUT.
segment8 = (26,19,13,6,5,11,9,10)
for segment in segment8:
GPIO.setup(segment, GPIO.OUT)
GPIO.output(segment, 0)
We do the same thing with the digital pins, but we set them to output and set them to zero by default.
#Digit 1
GPIO.setup(7, GPIO.OUT)
GPIO.output(7, 0) #Off initially
#Digit 2
GPIO.setup(8, GPIO.OUT)
GPIO.output(8, 0) #Off initially
#Digit 3
GPIO.setup(25, GPIO.OUT)
GPIO.output(25, 0) #Off initially
#Digit 4
GPIO.setup(24, GPIO.OUT)
GPIO.output(24, 0) #Off initially
Numbers on a seven-segment display must be formed into arrays. To show a single digit, we need to toggle the on/off status of all but the dot pin of the 7-segment Display. For the numeral 5, for instance, we can use this setup:
For all alphabets and numerals, there is an equivalent sequence number. You can write on your own or utilize the handy table provided.
Using this information, we can create arrays for each digit in our Python code, as demonstrated below.
null = [0,0,0,0,0,0,0]
zero = [1,1,1,1,1,1,0]
one = [0,1,1,0,0,0,0]
two = [1,1,0,1,1,0,1]
three = [1,1,1,1,0,0,1]
four = [0,1,1,0,0,1,1]
five = [1,0,1,1,0,1,1]
six = [1,0,1,1,1,1,1]
seven = [1,1,1,0,0,0,0]
eight = [1,1,1,1,1,1,1]
nine = [1,1,1,1,0,1,1]
Let's bypass the function in the code that would otherwise be executed before entering the while loop and begin displaying characters on our 7-segment Display. If you hook up a Raspberry Pi to the internet, it will read the current time and divide it into four separate variables. For instance, when the time is 10.45, the values assigned to h1 and h2 will be 1 and 0, while m1 and m2 will be 4 and 5, respectively.
now = DateTime.DateTime.now()
hour = now.hour
minute = now.minute
h1 = hour/10
h2 = hour % 10
m1 = minute /10
m2 = minute % 10
print (h1,h2,m1,m2)
These four numbers will be displayed on one of our four digits. The lines below can be used to convert a variable's value to a decimal. Here, we show the value in variables on the 7-segment Display by using the function print segment (variable) with the digit 1 set to the highest possible value. You may be asking why we turn off this digit and why there's a delay after that.
GPIO.output(7, 1) #Turn on Digit One
print_segment (h1) #Print h1 on segment
time.sleep(delay_time)
GPIO.output(7, 0) #Turn off Digit One
This is because the user will only be able to see the full four-digit number if all four digits are shown at once, and we all know that this isn't possible.
How, then, can we simultaneously show all four digits? With luck, our MPU is considerably quicker than the human eye. Therefore we offer one number at a time but exceptionally quickly. The MPU and segment display are given 2ms (variable delay time) to process each digit before we go on to the next. A human being cannot detect this 2ms lag; therefore, it appears as though all four digits illuminate simultaneously.
Understanding how to use print segment(variable) is the final puzzle piece. Arrays that have been declared outside of this function are used within it. As a result, the value of any variable passed to this function must be inside the range (0-9) so that the character variable can use in a meaningful comparison. Here, we check the variable against the value 1. The same is true for all comparisons with numbers between zero and nine. Assigning each value from the arrays to the appropriate segment pins is what we do if a match is found.
def print_segment(character):
if character == 1:
for i in range(7):
GPIO.output(segment8[i], one[i])
Use the provided schematic and code to connect your components and set up your Raspberry Pi. Once you've finished setting everything up, you can open the software and check the 7-segment Display to see the time. However, before doing this, you should check a few things.
If you want to be sure your Raspberry Pi isn't stuck in the past, you should update its time.
If you want to utilize a 7-segment display on your Raspberry Pi, you'll need to plug it into an adapter rather than a computer's USB connection because of the large amount of current it consumes.
import RPi.GPIO as GPIO
import time, DateTime
now = datetime.datetime.now()
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
#GPIO ports for the 7seg pins
segment8 = (26,19,13,6,5,11,9,10)
for segment in segment8:
GPIO.setup(segment, GPIO.OUT)
GPIO.output(segment, 0)
#Digit 1
GPIO.setup(7, GPIO.OUT)
GPIO.output(7, 0) #Off initially
#Digit 2
GPIO.setup(8, GPIO.OUT)
GPIO.output(8, 0) #Off initially
#Digit 3
GPIO.setup(25, GPIO.OUT)
GPIO.output(25, 0) #Off initially
#Digit 4
GPIO.setup(24, GPIO.OUT)
GPIO.output(24, 0) #Off initially
null = [0,0,0,0,0,0,0]
zero = [1,1,1,1,1,1,0]
one = [0,1,1,0,0,0,0]
two = [1,1,0,1,1,0,1]
three = [1,1,1,1,0,0,1]
four = [0,1,1,0,0,1,1]
five = [1,0,1,1,0,1,1]
six = [1,0,1,1,1,1,1]
seven = [1,1,1,0,0,0,0]
eight = [1,1,1,1,1,1,1]
nine = [1,1,1,1,0,1,1]
def print_segment(charector):
if charector == 1:
for i in range(7):
GPIO.output(segment8[i], one[i])
if charector == 2:
for i in range(7):
GPIO.output(segment8[i], two[i])
if charector == 3:
for i in range(7):
GPIO.output(segment8[i], three[i])
if charector == 4:
for i in range(7):
GPIO.output(segment8[i], four[i])
if charector == 5:
for i in range(7):
GPIO.output(segment8[i], five[i])
if charector == 6:
for i in range(7):
GPIO.output(segment8[i], six[i])
if charector == 7:
for i in range(7):
GPIO.output(segment8[i], seven[i])
if charector == 8:
for i in range(7):
GPIO.output(segment8[i], eight[i])
if charector == 9:
for i in range(7):
GPIO.output(segment8[i], nine[i])
if charector == 0:
for i in range(7):
GPIO.output(segment8[i], zero[i])
return;
while 1:
now = DateTime.DateTime.now()
hour = now.hour
minute = now.minute
h1 = hour/10
h2 = hour % 10
m1 = minute /10
m2 = minute % 10
print (h1,h2,m1,m2)
delay_time = 0.001 #delay to create the virtual effect
GPIO.output(7, 1) #Turn on Digit One
print_segment (h1) #Print h1 on segment
time.sleep(delay_time)
GPIO.output(7, 0) #Turn off Digit One
GPIO.output(8, 1) #Turn on Digit One
print_segment (h2) #Print h1 on segment
GPIO.output(10, 1) #Display point On
time.sleep(delay_time)
GPIO.output(10, 0) #Display point Off
GPIO.output(8, 0) #Turn off Digit One
GPIO.output(25, 1) #Turn on Digit One
print_segment (m1) #Print h1 on segment
time.sleep(delay_time)
GPIO.output(25, 0) #Turn off Digit One
GPIO.output(24, 1) #Turn on Digit One
print_segment (m2) #Print h1 on segment
time.sleep(delay_time)
GPIO.output(24, 0) #Turn off Digit One
#time.sleep(1)
A similar section should appear below if everything is functioning as it should.
Typically, only 16 hexadecimal digits can be shown on a seven-segment display. Some show the digits 0-9, whereas others can show more. Seven-segment displays can only show a maximum of 16 values due to a lack of input leads. However, LED technology does allow for more than this. Even with the help of integrated circuit technology, the possible permutations of the seven parts on the screen are very few.
This guide taught us how to connect a 7-segment screen to a Raspberry Pi 4. The seven-segment Display, which we learned is employed in digital timers, clocks, and other electrical gadgets, are a cheap, basic electrical circuit and reliable module. Seven-segment displays can either be "common-anode" (where the common point is the power input) or "common-cathode" (where the common end is grounded). After that, we coded some python scripts to show numbers on a single seven-segment model and the time across four such screens. Next, we'll see how to use a Raspberry Pi 4 as the basis for a low-power Bitcoin miner.