Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Jumper Wires | Amazon | Buy Now | |
2 | DS1307 | Amazon | Buy Now | |
3 | Raspberry Pi 4 | Amazon | Buy Now |
Thank you for joining us for yet another session of this series on Raspberry Pi programming. In the preceding tutorial, we implemented a speech recognition system using raspberry pi and used it in our game project. We also learned the fundamentals of speech recognition and later built a game that used the user's voice to play. However, this tutorial will integrate a real-time clock with our raspberry pi four and use it to build a digital clock. First, we will learn the fundamentals of the RTC module and how it works, then we will build a digital clock in python3. With the help of a library, we'll demonstrate how to integrate an RTC DS3231 chip with Pi 4 to keep time.
RTCs are clock units, as the name suggests. There are eight pins on the interface of the RTC IC, the DS1307. An SRAM cell backup of 56 bytes is included in the DS1307, a small clock, and a calendar. Secs, mins, hrs, days, and months are all included in the timer. When a month has fewer than 31 days, the date of the end of this month is automatically shifted.
They can be found in integrated circuits that monitor time and date as a calendar and clock. An RTC's key advantage is that the clock and calendar will continue to function in the event of a power outage. The RTC requires only a small amount of power to operate. Embedded devices and computer motherboards, for example, contain real-time clocks. The DS1307 RTC is the subject of this article.
The primary purpose of a real-time clock is to generate and keep track of one-second intervals.
The diagram to the right shows how this might look.
A program's method, A, is also displayed, which reads a second counter and schedules an action, B, to take place three secs from now. This kind of behavior is known as an alarm. Keep in mind that the secs counter doesn't start and stop. Accuracy and reliability are two of the most important considerations when choosing a real-time clock.
A real-time clock's hardware components are depicted in the following diagram.
An auxiliary crystal and a spectral reference can be used with a real-time clock's internal oscillator, frequently equipped with an interior crystal. The frequency of all clocks is 32,768 Hertz. A TCXO can be used with an exterior clock input since it is extremely accurate and steady.
An input to a Prescaler halves the clock by 32,768 to generate a one-second clock, which is selectable via a multiplexer.
For the most part, a real-time clock features a secs counter with at least thirty-two bits. Certain real-time clocks contain built-in counters to maintain track of the date and time.
Firmware is used to keep track of time and date in a simple real-time clock. The 1 Hertz square waveform from an output terminal is a frequent choice. It's feasible for a real-time clock to trigger a CPU interrupt with various occurrences.
Whenever the whole microcontroller is turned off, a real-time clock may have a separate power pin to keep it running. In most cases, a cell or external power source is attached to this pin's power supply.
Using a 32,768 Hertz clock supply, real-time clock accuracy is dependent on its precision. The crystals are the primary source of inaccuracy in a perfectly-designed signal generator. The internal oscillators and less costly crystals can be employed with sophisticated frequency enhancement techniques for incredibly precise timing. A crystal has three primary causes of inaccuracy.
Tolerances for the initial circuitry and the crystal.
Temperature-related crystal smearing.
Crystallization
Real-time clock accuracy is seen graphically in the figure below:
Using this graph, you can see how a particular concern tolerance changes with increased temperature. The temperature inaccuracy is visible inside the pink track. The quadratic function used to predict the future characteristics of crystals is essential to correct for temperature. Once a circuit board has been built and the temp is determined, an initial error measurement can be used to correct most of the other sources of error.
To acquire an accurate reading, you'll need to adjust to the yellow band. A year's worth of 1 ppm equals 30 seconds of your life. To some extent, the effects of crystallization can't be undone. Even though you're getting older, it's usually just a couple of years.
Pin 1, 2: The usual 32.768-kilohertz quartz crystal can be connected here.
Pin 3: Any conventional 3 Volt battery can be used as an input. To function properly, the battery voltage must be in the range of 2V to 3.5V.
Pin 4: This is the ground.
Pin 5: Streaming data input or output. It serves as the serial interface input and output, and a resistor is required to raise the power to the maximum of 5.5 volts. Irrespective of the current on the VCC line.
Pin 6: Input for the serial timer Data sync is done via the interface clock here.
Pin 7: Driver for the output waveform. A square wave frequency can be generated by connecting a signal to the out pin with the sqwe value set to 1.
Pin 8: The main source of power. Data is written and read whenever the voltage provided to the gadget is within standard limits.
an output waveform that can be programmed
Power-failure detection and switch circuitry automation
Consume less power
Real-time data and time is provided
The rtc is mainly used for writing and reading to and from its registers. Addresses for the rtc registers can be found from zero to 63. If necessary, transitory variables can be stored in random access memory in place of the first eight clock registers. Second, minute, hour, dates, months, and years are all included in the clock's top seven registers. Let's have a look at how DS1307 operates.
The sole purpose of a real-time clock is to record the passage of time. Regular monitoring of the passing of time is critical to the operation of computers and many smaller electronic devices. Although it simply serves one purpose, managing time has many applications and functions. Nearly every computer activity uses measurements taken and monitoring the present time, from the generation of random numbers to cybersecurity.
Kinematic activities or a real-time clock module keep track of time in a classic watch, so how does it work?
The answer is in crystal oscillators, as you would have guessed. The real-time clock uses oscillator pulses in electronic components to keep track of time. Quartz crystals are commonly used in this oscillator, which typically operates at a frequency of 32 kilohertz. Software cleverness is needed to take the processing times and correct any differences related to power supply variations or tiny changes in cycle speed.
Auxiliary tracking is used in real-time clock modules, which uses an exterior signal to lock onto a precise, uniform time. As a result, this does not override the internal measures but complements them to ensure the highest level of accuracy. An excellent example is a real-time clock module that relies on external signals, such as those found on cell phones. Oscillation cycles are counted again if the phone loses access to the outside world.
An object made of quartz crystals has a physical form. As a result, the real-time clock module accuracy can degrade over time due to extreme heat and cold exposure. Many modules include a temperature sensing technique to counteract the effects of temperature variations and improve the oscillator's overall accuracy. There is a wide range of frequencies available in cheap a crystal used in Computer systems. So, the error rate is around 72 milliseconds per hr in real-time. In this case, the following criteria are met:
Start data transfer: Clock and Data lines must be high for a START.
Stop data transfer: In STOP mode, data lines go from low to high while the clock lines remain high.
Data valid: START conditions must be met before a clock signal high period can be used to determine if the transmission line is stable. The info on the channel must be updated when the clock signal is at a lower frequency. Each piece of data has one clock frequency.
Each data transfer begins and ends with START and END conditions, respectively. During the START or STOP circumstances, the data rate bytes that can be sent are not restricted and are set by the master unit. Byte-by-byte, each recipient validates the transmission with a 9th bit.
A real-time clock can be used in systems to correct timing faults in two different ways. The graphic below shows the Prescaler counting the oscillation cycles per the second period.
The advantage of this method is that the time interval between each second is only slightly altered. However, a variable Prescaler and an extra register for storing the prescale counts, and the interval between applications are necessary for this technology to work.
Suppose the real-time clock does not contain a built-in prescaler that can be used to fine-tune the timing. This diagram illustrates a different way of approaching the problem.
The numbers in the rectangles indicate the secs counter. The program continuously tracks and calculates the real-time clock seconds count. A second is added or subtracted to compensate for the cumulative mistake whenever the error reaches 1 second.
This strategy has a drawback: the difference in seconds whenever an adjustment is made might be rather considerable. With this method, you can use it with any real-time clock.
To keep track of the current date and time, certain RTCs use electronic counters. Counting seconds, mins, hours, days, weeks, months, and years and taking leap years into account is necessary. Applications can also keep track of the time and date.
The second counter of a real-time clock can be used to implement this system on a microcontroller.
The proprietary method gets time(), or something similar is commonly used to access the device timer. Using get time() is as simple as taking a second counter and printing out the resulting value. The library handles the remainder of the work to convert this time in secs to the present time of day and date.
If you turn off your RPi, you won't have access to its internal clock. It uses a network clock protocol that requires an internet connection when it is turned on. A real-time timer must be installed in the raspberry pi to keep time without relying on the internet.
First, we'll need to attach our real-time control module to the RPi board. Ensure the Rpi is deactivated or unplugged before beginning any cabling.
Make use of the links in the following table and figure:
The rtc is powered by a 3.3V supply; hence it needs an input of 3.3V. Connect the RTC to the Pi 4 via a communication protocol.
We must first enable I2C in the RPi to use the RTC component.
Open a terminal window and enter the command raspi-config:
sudo raspi-config
Select the Interfacing Option in the configuration tool.
Selecting I2C will allow I2C in the future.
Before rebooting, enable the I2C.
sudo reboot
Confirm the Connections of the RTC. Then using the I2C interface, we can check to see if our real-time clock module is connected to the device.
Ensure your Pi's software is updated before putting any software on it. Defective dependencies in modules are frequently to blame for installation failures.
sudo apt-get update -y
sudo apt-get upgrade -y
If our RPi detects a connection from the real-time clock module, we'll need python-SMBus i2c-tools installed.
On the command line:
sudo apt-get install python-SMBus i2c-tools
Then:
sudo i2cdetect -y 1
Many real-time devices use the 68 address. This indicates that any driver is not using the address. If the address returned by the system is "UU," it indicates that a program actively uses it.
Install Python.
sudo apt-get install python-pip
sudo apt-get install python3-pip
To get the git library, you'll first need to get the git installed on your computer.
$sudo apt install git-all
First, we will have to download the library using the following command in the command line.
sudo git clone https://github.com/switchdoclabs/RTC_SDL_DS3231.git
A file called "RTCmodule" should be created after cloning. The following code should be copied and pasted into a new py file. Please save it.
import time
import SDL_DS3231
ds3231 = SDL_DS3231.SDL_DS3231(1, 0x68)
ds3231.write_now()
while True:
print “Raspberry Pi=\t” + time.strftime(%Y-%m-%d %H:%M:%S”)
print “Ds3231=\t\t%s” % ds3231.read_datetime()
time.sleep(10.0)
We begin by importing the packages we plan to use for this project.
The clock is initialized.
Next, the RPi and real-time clock module times are printed.
Then, execute the program.
$ python rtc.py
In this case, the output should look something like the following.
The write all() function can alter the rtc to run at a different rate than the Pi's clock.
ds3231.write_all(29,30,4,1,3,12,92,True)
import time
import SDL_DS3231
ds3231 = SDL_DS3231.SDL_DS3231(1, 0x68)
ds3231.write_all(29,30,4,1,3,12,92,True)
while True:
print “Raspberry Pi=\t” + time.strftime(%Y-%m-%d %H:%M:%S”)
print “Ds3231=\t\t%s” % ds3231.read_datetime()
time.sleep(10.0)
Time and date are shown to have adjusted on the rtc. With this, we'll be able to use the real-time clock and the package for various projects. However, more setup is required because we'll use the RPi's real-time clock for this project.
, we will configure the rtc on the RPi used in this project. The first thing to do is to follow the steps outlined above.
The real-time clock address is 0x68, so we must use that. Configuration.txt must be edited so that a device tree layer can be added.
sudo nano /boot/config.txt
Please note where your real-time clock chip is in the Pi config file and include it there.
dtoverlay=i2c-rtc,ds1307
or
dtoverlay=i2c-rtc,pcf8523
or
dtoverlay=i2c-rtc,ds3231
After saving and restarting the Pi, inspect the 0x68 address status.
sudo reboot
After reboot, run:
sudo i2cdetect -y 1
Once the "fake hwclock" has been disabled, we can use the real-time clock real hwclock again.
The commands below should be entered into the terminal to remove the bogus hwclock from use.
sudo apt-get -y remove fake-hwclock
sudo update-RC.df fake-hwclock remove
sudo systemctl disable fake-hwclock
We can use our rtc hardware as our primary clock after disabling the fake hwclock.
sudo nano /lib/udev/hwclock-set
Afterward, type in the lines below.
#if [-e/run/systemd/system];then
#exit 0
#if
#/sbin/hwclock --rtc=$dev --systz --badyear
#/sbin/hwclock --rtc=$dev --systz
We can now run some tests to see if everything is working properly.
To begin with, the real-time clock will show an inaccurate time on its screen. To use the real-time clock as a device, we must first correct its time.
To verify the current date, the real-time clock is launched.
$sudo hwclock
It is necessary to have an internet connection to our real-time clock module to synchronize the accurate time from the internet.
To verify the date of the terminal and time input, type in:
date.
Time can also be manually set using the line below. It's important to know that the internet connection will immediately correct it even if you do this manual process.
date --date="May 26 2022 13:12:10"
The real-time clock module time can also be used to set the time of the Rpi.
sudo hwclock –systems
or
sudo hwclock –w
Setting the time on our real-time clock module is also possible using:
sudo hwclock --set --date "Thu May 26 13:12:10 PDT 2022"
Or
sudo hwclock --set --date "26/05/2022 13:12:45"
Once the time has been synchronized, the real-time clock module needs a battery inserted to continue saving the timestamp. Once the real-time clock module has been installed on the RPi, the timestamp will be updated automatically!
Building our application
Next, we'll build a digital clock that includes an alarm, stopwatch, and timer features. It is written in Python 3, and it will operate on a Raspberry Pi using the Tkinter GUI library.
The library includes the Tkinter Graphical interface framework, which runs on various operating systems and platforms. Cross-platform compatibility means that the code can be used on every platform.
Tkinter is a small, portable, and simple-to-use alternative to other tools available. Because of this, it is the best platform for quickly creating cross-platform apps that don't require a modern appearance.
Python Tkinter module makes it possible to create graphical user interfaces for Python programs.
Tkinter offers a wide range of standard GUI elements and widgets to create user interfaces. Controls and menus are included in this category.
Tkinter has all of the benefits of the TK package, thanks to its layered design. When Tkinter was first developed, its Graphical interface toolkit had already had time to evolve, so it benefited from that experience when it was created. As a result, Tk software developers can learn Tkinter very quickly because converting from Tcl/Tcl to Tkinter is extremely simple.
Because Tkinter is so user-friendly, getting started with it is a breeze. The Tkinter application hides the complex and detailed calls in simple, understandable methods. When it comes to creating a working prototype rapidly, python is a natural choice. Because of this, it is anticipated that its favorite Graphical interface library will be applied similarly.
Tkinter-based Py scripts don't require any running changes on a different platform. Any environment that implements python can use Tkinter. This gives it a strong benefit over many other competitive libraries, typically limited to a single or a handful of operating systems. Tkinter, on the other hand, provides a platform-specific look and feel.
Python distributions now include Tkinter by default. Therefore, it is possible to run commands using Tkinter without additional modules.
Tkinter's slower execution may be due to the multi-layered strategy used in its design. Most computers are relatively quick enough to handle the additional processes in a reasonable period, despite this being an issue for older, slower machines. When time is of the essence, it is imperative to create an efficient program.
Import the following modules.
from Tkinter import *
from Tkinter. ttk import *
import DateTime
import platform
We are now going to build a Tkinter window.
window = Tk()
window.title("Clock")
window.geometry('700x500')
Here, we've created a basic Tkinter window. "Clock" has been officially renamed. And make it a 700X500 pixel image.
Tkinter notebook can be used to add tab controls. We'll create four new tabs, one for each of the following: Clock, Alarm, Stopwatch, and Timer.
tabs_control = Notebook(window)
clock_tab = Frame(tabs_control)
alarm_tab = Frame(tabs_control)
stopwatch_tab = Frame(tabs_control)
timer_tab = Frame(tabs_control)
tabs_control.add(clock_tab, text="Clock")
tabs_control.add(alarm_tab, text="Alarm")
tabs_control.add(stopwatch_tab, text='Stopwatch')
tabs_control.add(timer_tab, text='Timer')
tabs_control.pack(expand = 1, fill ="both")
We've created a frame for every tab and then added it to our notebook.
We are now going to add the clock Tkinter components. Instead of relying on the RPi to provide the date and time, we'll use the rtc module time and date instead.
We'll include a callback function to the real-time clock module in the clock code to obtain real-time.
def clock():
date_time = ds3231.read_datetime()
time_label.config(text = date_time)
time_label.after(1000, clock)
Timestamps are retrieved from the DateTime package and transformed to Am or Pm time. This method must be placed after Tkinter's initialization but before the notebook.
We'll design an Alarm that will activate when the allotted time has expired in the next step.
get_alarm_time_entry = Entry(alarm_tab, font = 'calibri 15 bold')
get_alarm_time_entry.pack(anchor='center')
alarm_instructions_label = Label(alarm_tab, font = 'calibri 10 bold', text = "Enter Alarm Time. Eg -> 01:30 PM, 01 -> Hour, 30 -> Minutes")
alarm_instructions_label.pack(anchor='s')
set_alarm_button = Button(alarm_tab, text = "Set Alarm", command=alarm)
set_alarm_button.pack(anchor='s')
alarm_status_label = Label(alarm_tab, font = 'calibri 15 bold')
alarm_status_label.pack(anchor='s')
Set the alarm with the following format: HH: MM (PM/AM). For example, the time at which 01:30 PM corresponds to 1:30 p.m. As a final step, a button labeled "Set Alarm Button." In addition, the alarm status label indicates if the alarm has been set and shows the current time.
The set alarm button will trigger an alarm when this method is called. Replace Clock and Notebook setup functions with this one.
def alarm():
main_time = datetime.datetime.now().strftime("%H:%M %p")
alarm_time = get_alarm_time_entry.get()
alarm_time1,alarm_time2 = alarm_time.split(' ')
alarm_hour, alarm_minutes = alarm_time1.split(':')
main_time1,main_time2 = main_time.split(' ')
main_hour1, main_minutes = main_time1.split(':')
if int(main_hour1) > 12 and int(main_hour1) < 24:
main_hour = str(int(main_hour1) - 12)
else:
main_hour = main_hour1
if int(alarm_hour) == int(main_hour) and int(alarm_minutes) == int(main_minutes) and main_time2 == alarm_time2:
for i in range(3):
alarm_status_label.config(text='Time Is Up')
if platform.system() == 'Windows':
winsound.Beep(5000,1000)
elif platform.system() == 'Darwin':
os.system('say Time is Up')
elif platform.system() == 'Linux':
os.system('beep -f 5000')
get_alarm_time_entry.config(state='enabled')
set_alarm_button.config(state='enabled')
get_alarm_time_entry.delete(0,END)
alarm_status_label.config(text = '')
else:
alarm_status_label.config(text='Alarm Has Started')
get_alarm_time_entry.config(state='disabled')
set_alarm_button.config(state='disabled')
alarm_status_label.after(1000, alarm)
In this case, the module's time is taken and formatted in this way in case the If the time provided matches the time stored, it continues. In this case, it beeps following the operating system's default chime.
As a final step, we'll add a stopwatch to our code.
To complete our timer, we'll add all Tkinter elements now.
stopwatch_label = Label(stopwatch_tab, font='calibri 40 bold', text='Stopwatch')
stopwatch_label.pack(anchor='center')
stopwatch_start = Button(stopwatch_tab, text='Start', command=lambda:stopwatch('start'))
stopwatch_start.pack(anchor='center')
stopwatch_stop = Button(stopwatch_tab, text='Stop', state='disabled',command=lambda:stopwatch('stop'))
stopwatch_stop.pack(anchor='center')
stopwatch_reset = Button(stopwatch_tab, text='Reset', state='disabled', command=lambda:stopwatch('reset'))
stopwatch_reset.pack(anchor='center')
The stopwatch method is activated by pressing the Start, Stop, and Reset Buttons located below the Stopwatch Label.
Stopwatch counters will be included in the next section. Two stopwatch counters will be added first. Tkinter Initialization and the clock's method should be added to the bottom of the list.
stopwatch_counter_num = 66600
stopwatch_running = False
The stopwatch is described in these words. Adding a Stopwatch Counter is the next step. Add it to the bottom of the alarm clock and the top of the notebook's setup procedure.
def stopwatch_counter(label):
def count():
if stopwatch_running:
global stopwatch_counter_num
if stopwatch_counter_num==66600:
display="Starting..."
else:
tt = datetime.datetime.fromtimestamp(stopwatch_counter_num)
string = tt.strftime("%H:%M:%S")
display=string
label.config(text=display)
label.after(1000, count)
stopwatch_counter_num += 1
count()
The counter controls the stopwatch on the stopwatch. At the rate of one second each second, the Stopwatch counter is incremented by 1.
The stopwatch method, which is invoked by the Stopwatch Controls, is now complete.
if work == 'start':
global stopwatch_running
stopwatch_running=True
stopwatch_start.config(state='disabled')
stopwatch_stop.config(state='enabled')
stopwatch_reset.config(state='enabled')
stopwatch_counter(stopwatch_label)
elif work == 'stop':
stopwatch_running=False
stopwatch_start.config(state='enabled')
stopwatch_stop.config(state='disabled')
stopwatch_reset.config(state='enabled')
elif work == 'reset':
global stopwatch_counter_num
stopwatch_running=False
stopwatch_counter_num=66600
stopwatch_label.config(text='Stopwatch')
stopwatch_start.config(state='enabled')
stopwatch_stop.config(state='disabled')
stopwatch_reset.config(state='disabled')
We will now create a timer that rings when the timer has expired. Based on the stopwatch, it deducts one from the counter rather than adding 1.
The timer component will now be included in Tkinter.
timer_get_entry = Entry(timer_tab, font='calibiri 15 bold')
timer_get_entry.pack(anchor='center')
timer_instructions_label = Label(timer_tab, font = 'calibri 10 bold', text = "Enter Timer Time. Eg -> 01:30:30, 01 -> Hour, 30 -> Minutes, 30 -> Seconds")
timer_instructions_label.pack(anchor='s')
timer_label = Label(timer_tab, font='calibri 40 bold', text='Timer')
timer_label.pack(anchor='center')
timer_start = Button(timer_tab, text='Start', command=lambda:timer('start'))
timer_start.pack(anchor='center')
timer_stop = Button(timer_tab, text='Stop', state='disabled',command=lambda:timer('stop'))
timer_stop.pack(anchor='center')
timer_reset = Button(timer_tab, text='Reset', state='disabled', command=lambda:timer('reset'))
timer_reset.pack(anchor='center')
Get timer provides guidance that explains how to set the timer. HH:MM: SS, For instance, 01:30:40 denotes a time interval of one hour, thirty minutes, and forty secs. It then has a toggle that calls the Timer method, which has a start, stop, and reset button.
To begin, we'll insert 2 Timer counters. The two lines of code below the stopwatch and the clock method below should be added.
timer_counter_num = 66600
timer_running = False
In this section, we learn more about the "Timer" feature. Next, we'll implement the Timer Counter feature. In between the Stopwatch method and Notebook Initiation, put it.
def timer_counter(label):
def count():
global timer_running
if timer_running:
global timer_counter_num
if timer_counter_num==66600:
for i in range(3):
display="Time Is Up"
if platform.system() == 'Windows':
winsound.Beep(5000,1000)
elif platform.system() == 'Darwin':
os.system('say Time is Up')
elif platform.system() == 'Linux':
os.system('beep -f 5000')
timer_running=False
timer('reset')
else:
tt = datetime.datetime.fromtimestamp(timer_counter_num)
string = tt.strftime("%H:%M:%S")
display=string
timer_counter_num -= 1
label.config(text=display)
label.after(1000, count)
count()
The Timer counter controls the timer. Timer counter-variable num is decreased by one each second.
def timer(work):
if work == 'start':
global timer_running, timer_counter_num
timer_running=True
if timer_counter_num == 66600:
timer_time_str = timer_get_entry.get()
hours,minutes,seconds=timer_time_str.split(':')
minutes = int(minutes) + (int(hours) * 60)
seconds = int(seconds) + (minutes * 60)
timer_counter_num = timer_counter_num + seconds
timer_counter(timer_label)
timer_start.config(state='disabled')
timer_stop.config(state='enabled')
timer_reset.config(state='enabled')
timer_get_entry.delete(0,END)
elif work == 'stop':
timer_running=False
timer_start.config(state='enabled')
timer_stop.config(state='disabled')
timer_reset.config(state='enabled')
elif work == 'reset':
timer_running=False
timer_counter_num=66600
timer_start.config(state='enabled')
timer_stop.config(state='disabled')
timer_reset.config(state='disabled')
timer_get_entry.config(state='enabled')
timer_label.config(text = 'Timer')
If the task is started, this method retrieves the Timer input text and formats it before setting the Timer counter and calling the Timer counter to set the clock running. The timer is set to "False" if programmed to Stop. The counter is set to 666600, and running is configured to "False."
Finally, here we are at the end of the project. Finally, add the code below to start Tkinter and the clock.
clock()
window.main loop()
It will open the Tkinter and clock windows.
Stopwatch
32-Bit Second Counter Problems
Even while this counter can operate for a long period, it will eventually run out of memory space. Having a narrow count range can pose problems.
Management of the streetlights
Lighting Street Management System is a one-of-a-kind solution that regulates the automatic reallocation of lights in public spaces. It can measure electric consumption and detect tampering and other electrical situations that hinder the most efficient use of street lights. IoT-based automated streetlight management systems are intended to cut electricity usage while decreasing labor costs through precession-based scheduling. Streetlights are a vital element of any town since they improve night vision, offer safety on the streets, and expose public places, but they waste a significant amount of energy. Lights in manually controlled streetlight systems run at full capacity from sunset to morning, even if there is adequate light. High reliability and lengthy stability are guaranteed by this method. This task is carried out using computer software. When compared to the previous system, the new one performs better. Automated On and Off processes are based on the RTC module for the time frame between dawn and dusk of the next day. Manual mode was removed because of human flaws and difficulties in timely on and off activities, which necessitated the relocation of certified electricians over wide distances and caused time delays. Using an Internet of things controlled from a central command center and portable devices helps us avoid these delays while also identifying and correcting faults, conserving energy, and providing better services more efficiently.
This tutorial teaches the mechanics of a real-time clock and some major applications in real life. With ease, you can integrate this module into most of your projects that require timed operations, such as robot movements. You will also understand how the RTC works if you play around with it more. In the next tutorial, we will build a stop motion movie system using Raspberry pi 4.
We've all heard that clicking on links or attachments can lead to identity theft of sensitive, personal information. And while it's true - if you're not careful, you could be leaving yourself open to hackers and other dangers. But what most people might not know is the difference between "hacking" and "data theft". In this post, we outline the steps data security engineers recommend you take to protect yourself from these different types of threats.
Data security engineers are not your everyday IT professionals, so what do they recommend for parts of the population who aren't working in IT?
While some advice might be obvious - if you're on a secure, encrypted site, for example - for regular Internet users, data security engineers often urge people to take this one step further. In general, we suggest that individuals don't just treat a website as secure if they can't see that the website is encrypted with HTTPS , but instead assume encryption is there unless it's explicitly said otherwise.
What this means for you as a regular Internet user is that before you click on a link, you should pause and consider if the destination is where it says it's going to take you. If in doubt, search for the destination site to find out where it lives, then visit the site from there instead of clicking the link.
Two-factor authentication adds an extra layer of security in addition to your password by asking for another "factor" to activate your account - most commonly, a number sent either via text message or generated by an app on your smartphone.
Using two-factor authentication, you get maximum protection of your data in your account, protecting yourself from both hackers who have your password and malicious advice that directs you to a fake login page. And once you're there, using two-factor authentication can stop attackers from taking over your account entirely.
Computer security is a constant battle between developers on one side who are trying to make their applications as secure as possible and attackers on the other who are trying to exploit flaws in those applications. To keep up with the latest patches, developers recommend that users keep their software up to date with the latest versions - either automatically or manually.
Users also have a choice to control which applications automatically update. To stop them from installing unwanted software, users can opt out of automatic updates through their OS's control panel. And to ensure the latest security updates from their developer, developers recommend that users always install updates when told.
Since browsers are the foundation on which websites are built, regular Internet users need to keep their browsers current with the latest patches, features, and security fixes. And that means staying up to date.
For users who find themselves caught in an old browser, or for those who might have trouble keeping track of updates, developers recommend taking advantage of automatic browser updates . Then, when updates are available, the browser will notify you and you can update from there. With automatic patches and feature updates, your browser will ensure you're always current with the latest security features to protect your devices and information.
With all the benefits of social networking and sharing, it's easy to feel comfortable sharing each other's information with a promise of trust.
For regular Internet users putting personal information online for others to see, data security engineers think it's important to make sure that when you do share your information online, you're doing so for the right reasons.
The deciding factor here is whether or not you have control over the information and how to delete it from the site when you decide later that you don't want it there anymore.
If you do have control over the information and can delete it from that site, then data security engineers don't see any harm in sharing.
If you don't have control over the information though and aren't allowed to delete it, then data security engineers think it's important to consider other ways of getting your point across - perhaps by taking a picture with your smartphone and posting that online, rather than posting another selfie or a picture of your cat.
Regular Internet users who are constantly using smartphones and tablets are not only making themselves vulnerable to hackers when they're out in public but also at home with their devices. And data security engineers suggest that if users aren't already encrypting their devices, it might be time to start.
Locking an Android device with a password gives users a greater layer of protection over their phones and tablets. Encrypting laptops and desktops can also prevent someone in the same household from accessing your devices. And data security engineers recommend making encryption automatic for all of your cloud storage services like Dropbox and Google Drive since this makes recovery much easier should something go wrong.
While most mobile apps are smaller and more focused than larger software systems, it's still important for regular Internet users to choose the ones that offer security features over those that don't. And for those that do offer features, it's important to make sure they're useful and useful only in your specific situation.
Data security engineers suggest taking a look at reviews of any apps you're considering installing first - both those that are free and paid. Just because an app looks like something you might want isn't always the best reason to install it. After all, what good is an app that can protect security if it can't protect your information?
These steps should keep your online information and devices secure. But sometimes, no matter how prepared you are, problems can still happen. For those times when things do go wrong, data security engineers suggest taking a look at cyber liability insurance. So long as you're not violating the terms of service of any sites or apps that you might use - or ignoring the advice of data security engineers - then your policy should protect you if something happens.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
Thank you for joining us for yet another session of this series on Raspberry Pi programming. In the preceding tutorial, a facial recognition system on a Raspberry Pi 4 was used to develop a smart security system. We also learned how to create a dataset using two Python scripts to train and analyze a series of photographs of a certain person. This tutorial will teach you how to install pi-hole on a Raspberry Pi 4 and use it to block advertisements from anywhere. This is a great initiative for folks who are tired of annoying pop-up adverts while browsing. First, we'll learn how to set up the pi-hole without the need for an environment, then we'll use Docker to install pi-hole, and ultimately we'll see how we can access it from anywhere.
Ads with poor quality are all over the internet, causing havoc with the entire user experience. Various varieties of these intrusive ads are available, ranging from video content that takes control of your browser to ads that infect your computer with malware and steal your private information without your knowledge.
So far, using an ad blocker has shown to be an effective method of preventing advertising of this nature. What if you could have an ad blocker that works on all your local area network devices instead?
Using Pi-hole, an ad-blocking program for the raspberry pi computer, you can block all major advertising networks from loading adverts on your networked devices.
You must first install and configure Pi-hole on your RPi before using it.
DNS server requests are used by all internet services, including adverts, to get you from source to destination. A DNS server translates theengineeringprojects.com into server IP addresses that your web browser can use to connect to the site. As with DNS, ad networks use it to request that their advertising be served.
When you see a Google ad, your internet explorer is likely making requests to domains like theengineeringprojects.com to deliver them appropriately. You have to intercept and prevent these adverts from loading, and that's exactly what Pi-hole does.
You can use Pi-hole to operate as a DNS server for your network. Requests to ad networks are initially routed through Pi-hole, which serves as your Domain name server. Thousands of domains on its blocklist are compared to see if any match these. Ads will be prohibited if the website is blocked, allowing you to have an ad-free experience.
Devices with limited ad-blocking options will find this useful. If you want to avoid adverts on your smart TV or gaming console, you'll need a third-party tool such as Pi-hole to handle the job for you.
Pi-web hole's interface allows you to block or allow specific domains to prohibit strange advertising networks or other questionable sites from loading if you need to tailor the system.
Pi-hole can be installed in two methods on a Raspberry Pi and other Unix distributions such as Debian and Ubuntu. When running a Linux distribution other than rasbian, a single-line command can be used to install it.
Alternatively, you can utilize Docker on the RPi to isolate Pi-hole in a software container. However, Docker requires many configurations, but it does enable you to host pi-hole on a virtual machine.
The fastest approach to get Pi-hole up and running is to utilize the designer's installation script. Running the script via curl or downloading it manually are two options.
Launch a command line and enter:
sudo curl -SSL https://install.pi-hole.net | bash
Before the setup is complete, you can customize Pi settings holes by running the automatic installation script and downloading any necessary packages.
Curling a program from the web is generally terrible practice because you can't preview what the script does before running it, even if it is allowed. You could download your program and then explicitly run it as a last resort.
Obtaining the file is as simple as opening a terminal and typing.
wget -O basic-install.sh https://install.pi-hole.net
sudo bash basic-install.sh
Installing Pi-hole and any other required tools will be completed using the same script used during setup.
Your network connection and chosen logging level will be requested for confirmation at some stage in the installation procedure under the terminal's config choices.
If you don't want to risk losing the randomly created admin passcode displayed at the end of the installation, make a note of that information. If you lose or forget the passcode, you will have to open a command line and run the below to change the password.
sudo pihole -a -p
A Docker container can be used instead of the script supplied above to manage Pi-hole.
Docker is a free software platform for creating containers. With the rise of cloud-native systems, container delivery has gained popularity as a more efficient means of distributing dispersed applications.
It's possible to develop a container without Docker. However, the framework makes the process easier and more secure to do. Docker is a set of tools that make it easy for programmers to create, deploy, operate, upgrade and terminate containers with a single application programming interface and a few basic instructions.
The Unix kernel has inbuilt isolation and virtualization features that make containers practical. Many of the same functionality that a hypervisor provides to allow multiple virtual machines to share a common hardware CPU and memory can also be found in the os.
Since containers provide all the benefits and features of Virtual machines, like software isolation, low-cost scaling, and disposability, they also offer some major new benefits:
Docker provides a shell script that makes it simple to get it up and run.
curl -sSL https://get.docker.com | sh
The following two commands can be used to analyze programs before they are executed:
curl -SSL get.docker.com -o get-docker.sh
sh get-docker.sh
The "permission denied" message will appear if you run several Docker commands, indicating that the root account can only use Docker. For non-root users that want to run Docker commands, the following command will work:
sudo usermod -aG docker pi
It is possible to add users to groups using usermod with -aG. A person called "pi" is now part of a " docker group." This made it possible for pi to perform docker instructions. Any other user can substitute the default pi account.
The command below can be used to confirm this:
groups pi
Check to see if Docker is mentioned as a group.
We will use the hello-world image to see how well Docker works.
docker run hello-world
To tell whether you have installed Docker correctly, you will see "Hello from Docker!"
With the help of Docker-compose, you can create and maintain your environment with YAML files. For applications that require various interconnected services, this is a particularly helpful feature.
To get docker-compose up and running, run pip3 to get it started.
sudo pip3 -v install docker-compose
You'll need to clone the Pi-hole Docker installer from the Pi-hole Git repository to run Pi-hole in a docker container. Let us install Git so that we can get started on this.
Git keeps track of all the modifications you make to scripts, allowing you to roll back to previous versions if necessary. Using Git, many people may merge their contributions into a single source, making it easier for everyone to work together.
You can use Git irrespective of whether or not you develop code that you alone will view or if you are collaborating.
Git program can be executed on a computer's hard drive. You have access to all of your documents and their histories on your computer. Online hosting can also be used to keep a duplicate of the documents and the histories of their modifications. Sharing your modifications and downloading others' updates in a central location makes it easier to collaborate with other programmers. You may even integrate the modifications made by two people working on the same project without losing one another's work, thanks to Git's ability to combine changes automatically.
You may get the software of any os from the Git official site.
Installing Git from the command-line interface is as simple as typing the commands below into your terminal window:
sudo apt-get install git-all
Type in the following command:
git config --global user.name "TheEngineeringProjects"
The quote marks are for your name. The —global parameter specifies that your Git name will be set for all your computer's repositories.
Type the command below to make sure you typed your username accurately when in doubt.
Git config --global user.name
this should return your username:
When pushing code to GitHub, you'll need to provide a valid email address. This can be done in Git.
git config --global user.email "Theengineeringprojects@example.com"
To make sure you've entered your email address correctly, here's a final check:
git config --global user.email Theengineeringprojects@example.com
In a command window, enter the following commands.
git clone https://github.com/pi-hole/docker-pi-hole.git
The pi-hole git repository will be fetched to run Pi-hole in a Virtualized environment. Your container's setup script may be found in the copied Pi-hole directory. You should look over and make any necessary changes to the setup script before executing it.
The program automatically generates an admin passcode for Pi-hole, as are other options like the time - zone Pi-hole utilizes and the standard Domain name server it uses for outbound DNS queries.
./docker_run.sh
Take note of the passcode displayed when the script has been completed successfully. Please note that this passcode is required for further configuration of the Pi-hole.
A reboot of your raspbian should immediately start the service Pi-hole, thanks to its Docker launch script use of the —restart=unless stopped parameter.
However, this only works if you have performed the above steps to activate the container init file to ensure the Docker container is automatically launched upon startup.
Your gadgets should be ready to use Pi-hole now that it has been installed and operating. Default by Pi-hole does not block advertisements in your network. Change your device Domain name server settings to use the Rpi's internet address instead, and they will work.
Each gadget on the local network can be configured for Pi-hole as its Domain name server manually or set up your home network router for Pi-hole instead. To physically configure each device to use Pi-hole, please follow the instructions below.
Your Pi-hole admin interface should begin to show web requests from all devices once configured to utilize the Raspberry Pi's Internet address. Launch an ad-supported application or visit a site like Forbes if you want to ensure Pi-hole is restricting advertisements.
Pi-hole should function properly if the adverts are blocked. In some cases, restarting your devices may be necessary for the Domain name server settings to take effect.
To utilize Pi-hole on many devices within your network, you'll need to configure all of the local network's computers and routers, which is time-consuming and inefficient.
You should use your Rpi's internet address instead of your router's Domain name server settings. As a result, no advertising will be sent to any gadgets on the local area network. By contrast, manually configuring the Domain name server on each device is time-consuming and inconvenient.
To change your Domain name server settings, you will need to know what kind of router you have and what model it is. This information should be displayed on the router or included in the package that came with it.
As a last resort, you might examine your router's guide, use an internet browser, and try out some popular internet protocol addresses.
Internet providers' Domain name servers are typically pre-configured in the router. Ensure the Internet protocol address of the RPi is used as the DNS server.
As a result, all devices connected will be directed to use Pi-hole as the initial gateway for all Domain name server requests. There will be no processing of banned queries, while approved queries will be forwarded to the internet domain name server provider you've selected in your Pi-hole settings.
You may need to reset your router for your new Domain name server configurations to take effect throughout your whole network.
If Pi-hole is up and running, you may log into the administrator site from any internet browser by entering the URL below.
If that doesn't work, it may be necessary to look up your Rpi Pi's internet protocol address if that doesn't work.
Users who haven't logged in to Pi-admin hole's site should be able to see a summary of the service's statistics. Even though Pi-hole is designed to be a "set it and leave it" solution, you will have to make any necessary changes to the settings here.
The Pi-hole administrator site can be accessed by clicking the Login button in the left navigation. Signing in requires you to use the passcode you set up while installing Pi-hole.
If you ever forget the Pi-hole administrative passcode, launch a command prompt or remote SSH connect and use the following command to change the passcode.
sudo pihole -a -p
or
docker exec -it pihole pihole -a -p
When using Docker containers to execute Pi-hole.
You will see all of Pi's features, hole stats, and reports after you have logged in. Pi-hole logs, bans and access control lists, and settings area are all accessible from this left navigation bar.
Most popular advertising networks are blocked by Pi-hole's lists which are frequently updated and managed by individuals and companies.
You can see them by selecting Group Management afterward Adlists in the left menu, where you may deactivate or delete any existing groups, or you can create your own.
Restrict and unblock domains by adding and removing them from the Blacklisted domain list. You can add a DNS server and descriptions to either the Blacklisted or Allowed domains menu by clicking on the Add button.
Select the red delete button symbol next to any entry in the Category of items section below that you want to delete.
If you've got an RPi running Pi-hole, you can utilize it as the Wi-Fi network's domain name server. At home, this is a terrific way to relax. However, you must be at home for this to work. Your Pi-hole must be accessible from any location if you wish to utilize it to prevent advertisements.
Pi-holes in the cloud is the most obvious method of accomplishing this. As long as you don't take further safeguards, malicious actors could exploit your Pi-hole to target other network portions. You also need to subscribe to it and integrate a cloud server. Regardless, we'll go with the low-cost and simple solution of using our RPi with Tailscale.
There is no better way to connect every device safely and conveniently than Tailscale. It gives you the option of selecting a Domain name server.
Tailscale can be used for free in most situations like this by individuals.
the first step is the installation of transport HTTP
sudo apt-get install apt-transport-https
Afterward, include the tailscale sign key and repo in the
curl -fsSL https://pkgs.tailscale.com/stable/raspbian/buster.gpg | sudo apt-key add -
curl -fsSL https://pkgs.tailscale.com/stable/raspbian/buster.list | sudo tee /etc/apt/sources.list.d/tailscale.list
With the code provided below, tailscale is now up and running
sudo apt-get install tailscale
Link your computer to the Tailscale network by authenticating and connecting it there.
sudo tailscale up --accept-dns=false
Pi-upstream hole's servers are Linux-configured Domain name servers, to which it sends DNS requests it cannot answer. Pi-Hole should not attempt to act as its source as it will serve as our Domain name server in this configuration.
Now you're linked up! You can discover your Tailscale Internet protocol address by:
tailscale IP -4
Tailscale's official website has the software you need to get started.
Tailscale's administrator console allows you to set up Domain name servers for your whole network. As a universal name server, provide the Internet address of your RPi's Tailscale as the Domain name server address.
Ensure to use the Override domain Name server option upon entering the Rpi's Tailscale Internet address so that our internet Domain name server will overwrite any local Domain name server settings that endpoints may have.
The security of your network may require that from time to time, you re-authenticate your devices with Tailscale. You'll want to turn off key expiration on the RPi in the administrator dashboard to prevent Domain name server outages when this happens.
That's all there is to it! Whenever you sign in to Tailscale, the Pi-hole will immediately serve as the Domain name server for that machine.
If the Pi-hole is preventing you from accessing whatever you need, you can deactivate it by deactivating Tailscale and reconnecting whenever you're ready.
If something goes wrong, you'll want to be comfortable with the Pi-hole administrator interface, but you won't need to use it regularly. Advertising networks and trackers will be secured and blocked on all or some of your equipment when your gadgets have been configured with Pi-hole in the background.
Because of Docker, you can run multiple programs on the Raspberry Pi simultaneously, providing a 24-hour DNS for you to access. As we've described in earlier chapters, you can use a Rpi network storage or a Rpi VPN to protect your privacy and anonymity online.
A list of well-known ad-serving domains is produced using data obtained from third parties.
Using internet filtering, it is possible to ban adverts in many platforms, such as mobile applications and smart screens.
Your network connection will perform better because advertising is prevented before they load.
Use adblocking software with a VPN service for advertisement blocking and data savings.
You can see the number of ads prevented and a query history on the Graphical interface.
Pi-hole blocks not all advertisements; however, the majority of them are. Pi-hole is a Domain name server with some blocked and allowed features pre-installed. It's not much more than that. Those guidelines determine whether or not a request is granted or refused. To filter advertising that does not use a Domain name server, Pi-hole uses a Domain name server and domain matching. This is a common occurrence in games played on smartphones. Ads are a common feature in many video games. It will not be possible to ban adverts that use the same domains as legitimate traffic. You'll have to put up with the YouTube advertising, even on pi-hole.
With Pi-hole and docker container, we learned how to filter intrusive advertisements from the world wide web. Our datagrams will be accessed more quickly, data loss will be minimized, and cost-effective. Using a raspberry pi 4, we'll develop a voice recognition system in the next chapter.
Thank you for joining us for yet another session of this series on Raspberry Pi programming. In the preceding tutorial, we created a pi-hole ad blocker for our home network using raspberry pi 4. We also learned how to install pi-hole on raspberry pi four and how to access it in any way with other devices. This tutorial will implement a speech recognition system using raspberry pi and use it in our project. First, we will learn the fundamentals of speech recognition, and then we will build a game that uses the user's voice to play it and discover how it all works with a speech recognition package.
Here, you'll learn:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
Are you curious about how to incorporate speech recognition into a Python program? Well, when it comes to conducting voice recognition in Python, there are a few things you need to know first. I'm not going to overwhelm you with the technical specifics because it would take up an entire book. Things have gone a long way when it comes to modern voice recognition technologies. Several speakers can be recognized and have extensive vocabulary in several languages.
Voice is the first element of speech recognition. A mic and an analog-to-digital converter are required to turn speech into an electronic signal and digital data. The audio can be converted to text using various models once it has been digitized.
Markov models are used in most modern voice recognition programs. It is assumed that audio signals can be reasonably represented as a stationary series when seen over a short timescale.
The audio signals are broken into 10-millisecond chunks in a conventional HMM. Each fragment's spectrogram is converted into a real number called cepstral coefficients. The dimensions of this cepstral might range from 10 to 32, depending on the device's accuracy. These vectors are the end product of the HMM.
Training is required for this calculation because the voice of a phoneme changes based on the source and even within a single utterance by the same person. The most probable word to produce the specified phoneme sequence is determined using a particular algorithm.
This entire process could be computationally costly, as one might expect. Before HMM recognition, feature transformations and dimension reduction methods are employed in many current speech recognition programs. It is also possible to limit an audio input to only those parts which are probable to include speech using voice detectors. As a result, the recognizer does not have to waste time studying sections of the signal that aren't relevant.
There are a few speech recognition packages in PyPI. There are a few examples:
NLP can discern a user's purpose in some of these programs, which goes beyond simple speech recognition. Several other services are focused on speech-to-text conversion alone, such as Google Cloud-Speech.
SpeechRecognition is the most user-friendly of all the packages.
Voice recognition necessitates audio input, which SpeechRecognition makes a cinch. SpeechRecognition will get you up to speed in minutes rather than requiring you to write your code for connecting mics and interpreting audio files.
Since it wraps a variety of common speech application programming interfaces, this SpeechRecognition package offers a high degree of extensibility. The SpeechRecognition library is a fantastic choice for every Python project because of its flexibility and ease of usage. The APIs it encapsulates may or may not be able to support every feature. For SpeechRecognition to operate in your situation, you'll need to research the various choices.
You've decided to give SpeechRecognition ago, and now you need to get it deployed in your environment.
Using pip, you may set up Speech Recognition software in the terminal:
$ pip install SpeechRecognition
When you've completed the setup, you should start a command line window and type:
Import speech_recognition as sr
Sr.__version__
Let's leave this window open for now. Soon enough, you'll be able to use it.
If you only need to deal with pre-existing audio recordings, Speech Recognition will work straight out of the box. A few prerequisites are required for some use cases, though. In particular, the PyAudio library must record audio from a mic.
As you continue reading, you'll discover which components you require. For the time being, let's look at the package's fundamentals.
The recognizer is at the heart of Speech Recognition's magic.
Naturally, the fundamental function of a Recognizer class is to recognize spoken words and phrases. Each instance has a wide range of options for identifying voice from the input audio.
The process of setting up a Recognizer is straightforward. It's as simple as typing "in your active interpreter window."
sr.Recognizer()
There are seven ways to recognize the voice from input audio by utilizing a distinct application programming interface in each Recognizer class. The following are examples:
Aside from recognizing sphinx(), all the other functions fail to work offline using CMU Sphinx. Internet access is required for the remaining six activities.
This tutorial does not cover all of the capabilities and features of every Application programming interface in detail. Speech Recognition comes with a preset application programming interface key for the Google Speech Application programming interface, allowing you to immediately get up and running with the service. As a result, this tutorial will extensively use the Web Speech Application programming interface. Only the Application programming interface key and the user are required for the remaining six application programming interfaces.
Speech Recognition provides a default application programming interface key for testing reasons only, and Google reserves the right to cancel it at any time. Using the Google Web application programming interface in a production setting is not recommended. There is no method to increase the daily request quota, even if you have a valid application programming interface key. If you learn how to use the Speech Recognition application programming interface today, it will be straightforward to apply to any of your projects.
Whenever a recognize function fails to recognize the voice, it will output an error message. Request Error if the application programming interface is unavailable. A faulty Sphinx install could cause this in the case of recognizing sphinx(). If quotas are exceeded, servers are unreachable, or there isn't internet service, a Request Error will be raised for all the six methods.
Let us use recognize google() in our interpreter window and see if it works!
Exactly what has transpired?
Something like this is most likely what you've gotten.
I'm sure you could have foreseen this. How is it possible to tell something from nothing?
The Recognizer function recognize() expects an audio data parameter. If you're using Speech Recognition, then audio data should become an instance of the audio data class.
To construct an AudioData instance, you have two options: you can either use an audio file or record your audio. We'll begin with audio files because they're simpler to work with.
To proceed, you must first obtain and save an audio file. Use the same location where your Python interpreter is running to store the file.
Speech Recognition's AudioFile interface allows us to work with audio files easily. As a context manager, this class gives the ability to access the information of an audio file by providing a path to its location.
This software supports various file formats, which include:
You'll need to get a hold of the FLAC command line and a FLAC encoding tool.
To play the "har.wav" file, enter the following commands into your interpreter window:
har = sr.AudioFile('har.wav')
with harvard as source:
audio = r.record(source)
Using the AudioFile class source, the context manager stores the data read from the file. Then, using the record() function, the full file's data is saved to an AudioData class. Verify this by looking at the format of the audio:
type(audio)
You can now use recognize_google() to see if any voice can be found in the audio file. You might have to wait a few seconds for the output to appear, based on the speed of your broadband connection.
r.recognize_google(audio)
Congratulations! You've just finished your very first audio transcription!
Within the "har.wav" file, you'll find instances of Har Phrases if you're curious. In 1965, the IEEE issued these phrases to evaluate telephone lines for voice intelligibility. VoIP and telecom testing continue to make use of them nowadays.
Seventy-two lists of 10 phrases are included in the Har Phrases. On the Open Voice Repository webpage, you'll discover a free recording of these words and phrases. Each language has its own set of translations for the recordings. Put your code through its paces; they offer many free resources.
You may want to record a small section of the speaker's speech. The record() method accepts the duration term parameter, which terminates the program after a defined amount of time.
Using the example above, the first 4 secs of the file will be saved as a transcript.
with har as source:
audio = r.record(source, duration=4)
r.recognize_google(audio)
In the files stream, utilize the record() function within a block. As a result, the 4 secs of audio you recorded for 4 seconds will be returned when you record for 4 seconds again.
with har as source:
audio1 = r.record(source, duration=4)
audio2 = r.record(source, duration=4)
r.recognize_google(audio1)
r.recognize_google(audio2)
As you can see, the 3rd phrase is contained within audio2. When a timeframe is specified, the recorder can cease in the middle of a word. This can harm the transcript. In the meantime, here's what I have to say about this.
The offset keywords arguments can be passed to the record() function combined with a recording period. Before recording, this setting specifies how many frames of a file to disregard.
with har as source:
audio = r.record(source, offset=4, duration=3)
r.recognize_google(audio)
Using the duration and the offset word parameters can help you segment an audio track if you understand the language structure beforehand. They can, however, be misused if used hurriedly. Using the following command in your interpreter should get the desired result.
with har as source:
audio = r.record(source, offset=4.7, duration=2.8)
r.recognize_google(audio)
The application programming interface only received "akes heat," which matches "Mesquite," because "it t" half of the sentence was missed.
You also recorded "a co," the first word of the 3rd phrase after the recording. The application programming interface matched this to "Aiko."
Another possible explanation for the inaccuracy of your transcriptions is human error. Noise! Since the audio is relatively clean, the instances mentioned above all worked. Noise-free audio cannot be expected in the actual world except if the soundtracks can be processed in advance.
Noise is an unavoidable part of everyday existence. All audiotapes have some noise level, and speech recognition programs can suffer if the noise isn't properly handled.
I listened to the "jackhammer" audio sample to understand how noise can impair speech recognition. Ensure to save it to the root folder of your interpreter session.
The sound of a jackhammer is heard in the background while the words "the stale scent of old beer remains" are spoken.
Try to translate this file and see what unfolds.
jackmer = sr.AudioFile('jackmer.wav')
with jackhammer as source:
audio = r.record(source)
r.recognize_google(audio)
How wrong!
So, how do you go about dealing with this situation? The Recognizer class has an adjust for ambient noise() function you might want to give a shot.
with jackmer as source:
r.adjust_for_ambient_noise(source)
audio = r.record(source)
r.recognize_google(audio)
You're getting closer, but it's still not quite there yet. In addition, the statement's first word is missing: "the." How come?
Recognizer calibration is done by reading the first seconds of the audio stream and adjusting for noise level. As a result, the stream has already been consumed when you run record() to record the data.
Adjusting ambient noise() takes the duration word parameter to change the time frame for analysis. The default value for this parameter is 1, but you can change it to whatever you choose. Reduce this value by half.
with jackmer as a source:
r.adjust_for_ambient_noise(source, duration=0.5)
audio = r.record(source)
r.recognize_google(audio)
Now you've got a whole new set of problems to deal with after getting "the" at the start of the sentence. There are times when the noise can't be removed from the signal because it simply has a lot of noise to cope with. That's the case in this particular file.
These problems may necessitate some sound pre-processing if you encounter them regularly. Audio editing programs, which can add filters to the audio, can be used to accomplish this. For the time being, know that background noise can cause issues and needs to be handled to improve voice recognition accuracy.
Application programming interface responses might be useful whenever working with noisy files. There are various ways to parse the JSON text returned by most application programming interfaces. For the recognize google() function to produce the most accurate transcription, you must explicitly request it.
Using the recognize google() function and the show all boolean argument will do this.
r.recognize_google(audio, show_all=True)
A transcript list can be found in the dictionary returned by recognizing google(), with the entry 'alternative .'This response format varies in different application programming interfaces, but it's primarily useful for debugging purposes when you get it.
As you've seen, the Speech Recognition software has a lot to offer. Aside from gaining expertise with the offsets and duration arguments, you also learned about the harmful effects noise has on transcription accuracy.
The fun is about to begin. Make your project dynamic by using a mic instead of transcribing audio clips that don't require any input from the user.
For Speech Recognizer to work, you must obtain the PyAudio library.
Use the command below to install pyaudio in raspberry pi:
sudo apt-get install python-pyaudio python3-pyaudio
Using the console, you can verify that PyAudio is working properly.
python -m speech_recognition
Ensure your mic is turned on and unmuted. This is what you'll see if everything went according to plan:
Let SpeechRecognition translate your voice by talking into your mic and discovering its accuracy.
The recognizer class should be created in a separate interpreter window.
import speech_recognition as sr
r = sr.Recognizer()
After utilizing an audio recording, you'll use the system mic as your input. Instantiation your Microphone interface to get at this information!
mic = sr.Microphone()
For raspberry pi, you must provide a device's index to use a certain mic. For a list of microphones, simply call our Mic class function.
Sr.Microphone.list_microphone_names()
Keep in mind that the results may vary from those shown in the examples.
You may find the mic's device index using the list microphone names function. A mic instance might look like this if you wanted to use the "front" mic, which has a value of Three in the output.
mic = sr.Microphone(device_index=3)
A Mic instance is ready, so let's get started recording.
Similar to AudioFile, Mic serves as a context manager for the application. The listen() function of the Recognizer interface can be used in the with section to record audio from the mic. This technique uses an input source as its initial parameter to capture audio until quiet is invoked.
with mic as source:
audio = r.listen(source)
Try saying "hi" into your mic once you've completed the block. Please be patient as the interpreter prompts reappear. Once you hear the ">>>" prompt again, you should be able to hear the voice.
r.recognize_google(audio)
If the message never appears again, your mic is probably taking up the excessive background noise. Ctrl then C key can halt the execution and restore your prompts.
Recognizer class's adjustment of ambient noise() method must be used to deal with the noise level, much like you did while attempting to decipher the noisy audio track. It's wise to do this whenever you're listening for mic input because it's less unpredictable than audio file sources.
with mic as source:
r.adjust_for_ambient_noise(source)
audio = r.listen(source)
Allow for adjustment of ambient noise() to finish before speaking "hello" into the mic after executing the code mentioned above. Be patient as the interpreter's prompts reappear before ascertaining the speech.
Keep in mind that the audio input is analyzed for a second by adjusting ambient noise(). Using the duration parameter, you can shorten it if necessary.
According to the website, not under 0.5 secs is recommended by the Speech Recognition specification. There are times when greater durations are more effective. The lower the ambient noise, the lower the value you need. Sadly, this knowledge is often left out of the development process. In my opinion, the default one-second duration is sufficient for most purposes.
Using your interpreter, type in the above code snippet and mutter anything nonsensical into the mic. You may expect a response such as this:
An UnknownValueError exception is thrown if the application programming interface cannot translate speech into text. You must always encapsulate application programming interface requests in try and except statements to address this problem.
Getting the exception thrown may take more effort than you imagine. When it comes to transcribing vocal sounds, the API puts in a lot of time and effort. For me, even the tiniest of noises were translated into words like "how." A cough, claps of the hands, or clicking the tongue would all raise an exception.
To put what you've learned from the SpeechRecognition library into practice, develop a simple game that randomly selects a phrase from a set of words and allows the player three tries to guess it.
Listed below are all of the scripts:
import random
import time
import speech_recognition as sr
def recognize_speech_from_mic(recognizer, microphone):
if not isinstance(recognizer, sr.Recognizer):
raise TypeError("`recognizer` must be `Recognizer` instance")
if not isinstance(microphone, sr.Microphone):
raise TypeError("`microphone` must be `Microphone` instance")
with microphone as source:
recognizer.adjust_for_ambient_noise(source)
audio = recognizer.listen(source)
response = {
"success": True,
"error": None,
"transcription": None
}
try: response["transcription"] = recognizer.recognize_google(audio)
except sr.RequestError:
response["success"] = False
response["error"] = "API unavailable"
except sr.UnknownValueError:
response["error"] = "Unable to recognize speech"
return response
if __name__ == "__main__":
WORDS = ["apple", "banana", "grape", "orange", "mango", "lemon"]
NUM_GUESSES = 3
PROMPT_LIMIT = 5
recognizer = sr.Recognizer()
microphone = sr.Microphone()
word = random.choice(WORDS)
instructions = (
"I'm thinking of one of these words:\n"
"{words}\n"
"You have {n} tries to guess which one.\n"
).format(words=', '.join(WORDS), n=NUM_GUESSES)
print(instructions)
time.sleep(3)
for i in range(NUM_GUESSES):
for j in range(PROMPT_LIMIT):
print('Guess {}. Speak!'.format(i+1))
guess = recognize_speech_from_mic(recognizer, microphone)
if guess["transcription"]:
break
if not guess["success"]:
break
print("I didn't catch that. What did you say?\n")
if guess["error"]:
print("ERROR: {}".format(guess["error"]))
break
print("You said: {}".format(guess["transcription"]))
guess_is_correct = guess["transcription"].lower() == word.lower()
user_has_more_attempts = i < NUM_GUESSES - 1
if guess_is_correct:
print("Correct! You win!".format(word))
break
elif user_has_more_attempts:
print("Incorrect. Try again.\n")
else:
print("Sorry, you lose!\nI was thinking of '{}'.".format(word))
break
Let's analyze this a little bit further.
There are three keys to this function: Recognizer and Mic. It takes these two as inputs and outputs a dictionary. The "success" value indicates the success or failure of the application programming interface request. It is possible that the 2nd key, "error," is a notification showing that the application programming interface is inaccessible or that a user's speech was incomprehensible. As a final touch, the audio input "transcription" key includes a translation of all of the captured audio.
A TypeError is raised if the recognition system or mic parameters are invalid:
Using the listen() function, the mic's sound is recorded.
For every call to recognize speech from the mic(), the recognizer is re-calibrated using the adjust for ambient noise() technique.
After that, whether there is any voice in the audio, recognize function is invoked to translate it. RequestError and UnknownValueError are caught by the try and except block and dealt with accordingly. Recognition of voice from a microphone returns a dictionary containing the success, error, and translated voice of the application programming interface request and the dictionary keys.
In an interpreter window, execute the following code to see if the function works as expected:
import speech_recognition as sr
from guessing_game import recognize_speech_from_mic
r = sr.Recognizer()
m = sr.Microphone()
recognize_speech_from_mic(r, m)
The actual gameplay is quite basic. An initial set of phrases, a maximum of guesses permitted, and a time restriction are established:
Once this is done, a random phrase is selected from the list of WORDS and input into the Recognizer and Mic instances.
After displaying some directions, the condition statement is utilized to handle each user's attempts at guessing the selected word. This is the first operation that happens inside of the first loop. Another loop tries to identify the person's guesses at least PROMPT LIMIT instances and stores the dictionary provided to a variable guess.
Otherwise, a translation was performed, and the closed-loop will end with a break in case the guess "transcription" value is unknown. False is set as an application programming interface error when no audio is transcribed; this causes the loop to be broken again with a break. Aside from that, the application programming interface request was successful; nonetheless, the speech was unintelligible. As a precaution, the for loop repeatedly warns the user, giving them a second chance to succeed.
If there are any errors inside the guess dictionary, the inner loop will be terminated again. An error notice will be printed, and a break is used to exit the outer for loop, which will stop the program execution.
Transcriptions are checked for accuracy by comparing the entered text to a word drawn at random. As a result, the lower() function for text objects is employed to ensure a more accurate prediction. In this case, it doesn't matter if the application programming interface returns "Apple" or "apple" as the speech matching the phrase "apple."
If the user's estimate was correct, the game is over, and they have won. The outermost loop restarts when a person guesses incorrectly and a fresh guess is found. Otherwise, the user will be eliminated from the contest.
This is what you'll get when you run the program:
Speech recognition in other languages, on the other hand, is entirely doable and incredibly simple.
The language parameter must be set to the required string to use the recognize() function in a language other than English.
r = sr.Recognizer()
with sr.AudioFile('path/to/audiofile.wav') as source:
audio = r.record(source)
r.recognize_google(audio, language='fr-FR')
There are only a few methods that accept-language keywords:
Do you ever have second thoughts about how you're going to pay for future purchases? Has it occurred to you that, in the future, you may be able to pay for goods and services simply by speaking? There's a good chance that will happen soon! Several companies are already developing voice commands for money transfers.
This system allows you to speak a one-time passcode rather than entering a passcode before buying the product. When it comes to online security, think of captchas and other one-time passwords that are read aloud. This is a considerably better option than reusing a password every time. Soon, voice-activated mobile banking will be widely used.
When driving, you may use such Intelligent systems to get navigation, perform a Google search, start a playlist of songs, or even turn on the lights in your home without touching your gadget. These digital assistants are programmed to respond to every voice activation, regardless of the user.
There are new technologies that enable Ai applications to recognize individual users. This tech, for instance, allows it to respond to the voice of a certain person exclusively. Using an iPhone as an example, it's been around for a few years now. If you want Siri to only respond to your commands and queries when you speak to it, you can do so on your iPhone. Unauthorized access to your gadgets, information, and property is far less possible when your voice can only activate your Artificial intelligent assistant. Anyone who is not permitted to use the assistant will not be able to activate it. Other uses for this technology are almost probably on the horizon.
In a distant place, imagine attempting to check into an unfamiliar hotel. Since neither you nor the front desk employee is fluent in the other country's language, no one is available to act as a translator. You can use the translator device to talk into the microphone and have your speech processed and translated verbally or graphically to communicate with another person.
Additionally, this tech can benefit multinational enterprises, educational institutions, or other institutions. You can have a more productive conversation with anyone who doesn't speak your language, which helps break down the linguistic barrier.
There are many ways to use the SpeechRecognition program, including installing it and utilizing its Recognizer interface, which may be used to recognize audio from both files and the mic. You learned how to use the record offset and the duration keywords to extract segments from an audio recording.
The recognizer's tolerance to noise level can be adjusted using the adjust for the ambient noise function, which you've seen in action. Recognizer instances can throw RequestErrors and UnknownValueErrors, and you've learned how to manage them with try and except block.
More can be learned about speech recognition than what you've just read. We will implement the RTC module integration in our upcoming tutorial to enable real-time control.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Breadboard | Amazon | Buy Now | |
2 | DC Motor | Amazon | Buy Now | |
3 | Jumper Wires | Amazon | Buy Now | |
4 | Raspberry Pi 4 | Amazon | Buy Now |
A growing number of us already use face recognition software without realizing it. Facial recognition is used in several applications, from basic Fb Tag suggestions to advanced security screening surveillance. Chinese schools employ facial recognition to track students' adherence and behaviour for the first time. Retail stores use face recognition to classify their clients and identify those who have a history of crime. There's no denying that this tech will be all over soon, especially with so many other developments in the works.
When it comes to facial recognition, biometric authentication goes well beyond simply being able to identify human faces in images or videos. An additional step is taken to identify the person's identity. A facial recognition software compares an image of a person's face to a database to see if the features match another person's. Since facial expressions and hair do not affect the technology's ability to identify matches, it has been built to do so.
How can face recognition be used when it comes to smart security systems?
The first thing you should do if you want to make your home "smart" is to focus on security. Your most prized possessions are housed at this location, and protecting them is a must. You can monitor your home security status from your computer or smartphone thanks to a smart security system when you're outdoors.
Installing a system that is not wireless in your house and signing you up for professional monitoring was traditionally done by a security company. The plot has been rewritten. When setting up a smart home system, you can even do it yourself. In addition, your smart smartphone acts as a professional monitor, providing you with real-time information and notifications.
Face recognition is the ability of a smart camera in your house to identify a person based on their face. Consequently, you will have to inform the algorithm what face goes with what name for face recognition to operate. Facial detection in security systems necessitates the creation of user accounts for family members, acquaintances, and others you want to be identified by the system. Your doors or the inside of your house will be alerted when they arrive.
Face-recognition technology allows you to create specific warning conditions. For example, you can configure a camera to inform you when an intruder enters your home with a face the camera doesn't recognize.
Astonishing advancements in smart tech have been made in recent years. Companies are increasingly offering automatic locks with face recognition. You may open your doors just by smiling at a face recognition system door lock. You could, however, use a passcode or a real key to open and close the smart door. You may also configure your smart house lock to email you an emergency warning if someone on the blacklist tries to unlock your smart security door.
OpenCV, as previously stated, will be used to identify and recognize faces. So, before continuing, let's set up the OpenCV library. Your Pi 4 needs a 2A power adapter and an HDMI cable because we won't be able to access the Pi's screen through SSH. The OpenCV documentation is a good place to learn how image processing works, but I'm not going to go into it here.
pip is well-known for making it simple to add new libraries to the python language. In addition, there is a technique to install OpenCV on a Raspberry Pi via PIP, but it didn't work for me. We can't obtain complete control of the OpenCV library when using pip to install OpenCV; however, this might be worth a go if time is of the essence.
Ensure pip is set up on your Raspberry Pi. Then, one by one, execute the lines of code listed below into your terminal.
sudo apt-get install libhdf5-dev libhdf5-serial-dev
sudo apt-get install libqtwebkit4 libqt4-test
sudo pip install opencv-contrib-python?
Facial recognition and face detection are not the same things, and this must be clarified before we proceed. When simply a user's face is detected using Face detection, the program has no clue who that person is. Only the face will be detected in facial recognition software, but the program will also recognize it. At this point, it's pretty evident that facial detection comes before facial recognition. To explain how OpenCV recognizes a person or other objects, I will have to go into detail.
Essentially, a webcam feed is like a long series continuously updating still photos. And every image is nothing more than a jumble of pixels with varying values arranged in a specific order. So, how does a computer software identify a face among all of these random pixels? Trying to describe the underlying techniques is outside the scope of this post, but since we're utilizing the OpenCV library, facial recognition is a straightforward process that doesn't necessitate a deeper understanding of the underlying principles.
We can only recognize a person if we can see it. Detection of an item, including a face, Classifiers are a feature of OpenCV. They are pre-trained datasets that may be utilized to recognize a certain item, such as a face. Classifiers may also detect additional objects, such as the mouth, the eyebrows, the number plate of a vehicle, and smiles.
Alternatively, OpenCV allows you to design your custom Classifier for detecting any objects in images by retraining the cascade classifier. For the sake of this tutorial, we'll be using the classifier named "haarcascade_frontalface_default.xml" to identify faces from the camera. We'll learn more about image classifiers and how to apply them in code in the following sections.
For the face training and detection, we only need the pi camera, and to install this, insert the raspberry pi camera in the pi camera slot as shown below. Then go to your terminal, open the configuration window using "sudo raspi-config", and press enter. Navigate to the interface options and activate the pi camera module. Accept the changes and finish the setup. Then reboot your RPi.
First, ensure pip is set up, and then install the following packages using it.
Install dlib: Dlib is a set of libraries for building ML and data analysis programs in the real world. To get dlib up and running, type the following command into your terminal window.
Pip install dlib
If everything goes according to plan, you should see something similar after running this command.
Install pillow: The Python Image Library, generally known as PIL, is a tool for opening, manipulating, and saving images in various formats. The following command will set up PIL for you.
pip install pillow
You should receive the message below once this app has been installed.
Install face_recognition: The face recognition package is often the most straightforward tool for detecting and manipulating human faces. Face recognition will be made easier with the help of this library. Installing this library is as simple as running the provided code.
Pip install face_recognition –no –cache-dir
If all goes well, you should see something similar to the one shown below after the installed software. Due to its size, I used the "—no –cache-dir" command-line option to configure the package without keeping any of its cache files.
A script named "haarcascade_frontalface_default.xml" is for detecting faces using a Classifier. It will also build a "face-trainner.yml" file using the training script based on the photos found in the face images directory.
The face images folder indicated above should contain subdirectories with the names of each person to be identified and several sample photographs of them. Esther and x have been identified for this tutorial. As a result, I've just generated the two sub-directories shown below, each containing a single image.
You must rename the directory and replace the photographs with the names of the people you are identifying. It appears that a minimum of five images for each individual is optimal. However, the more participants, the slower the software will run.
Face Trainer.py is a Python software that may be used to train a new face. The purpose of the software is to access the face photographs folder and scan for faces. As soon as it detects a face, it crops it, turns it to grayscale, and saves it in a file named face-trainner.yml using the face recognition package we had previously loaded. The information in this script can be used to identify the faces later. In addition to the whole Trainer program provided at the conclusion, we'll go over some more critical lines.
The first step is to import the necessary modules. The cv2 package is utilized to process photos. The NumPy library can be used for image conversion, the operating system package is used for directory navigation, and PIL will be used to process photos.
import cv2
import numpy as np
import os
from PIL import Image
Ensure that the XML file in question is located in the project directory to avoid encountering an issue. The LBPH Facial recognizer is then constructed using the recognizer parameter.
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
recognizer = cv2.createLBPHFaceRecognizer()
Face_Images = os.path.join(os.getcwd(), "Face_Images")
In order to open all of the files ending in.jpg,.jpg, or .png within every subfolder in the face images folder, we must traverse the tree with for loops. In a variable named path, we record the path to every image, and in a variable named person name, we store the file location name (the name of the user who uploaded the images).
For root, dirs, files in os.walk(Face_Images):
for file in files: #check every directory in it
if file.endswith("jpeg") or file.endswith("jpg") or file.endswith("png"):
path = os.path.join(root, file)
person_name = os.path.basename(root)
As a result, in case the name of the person changes, we increase a variable named Face_ID that will allow us to have a unique Face_ID for each individual.
if pev_person_name!=person_name:
Face_ID=Face_ID+1 #If yes increment the ID count
pev_person_name = person_name
Because the BGR values may be ignored, grayscale photos are simpler for OpenCV to deal with than colourful ones. We transform the data to grayscale and afterwards lower the image size by 50% so that all the pictures are the same size. To avoid having your face cut out, place it in the centre of the photo. To get a numerical number for these photos, transform them into NumPy arrays. Afterwards, a classifier identifies a face in a photo and saves the results in variable named faces.
Gery_Image = Image.open(path).convert("L")
Crop_Image = Gery_Image.resize( (550,550) , Image.ANTIALIAS)
Final_Image = np.array(Crop_Image, "uint8")
faces = face_cascade.detectMultiScale(Final_Image, scaleFactor=1.5, minNeighbors=5)
Our Area of Attention will be the portion of the image where the face may be found after being cropped. It will be utilized to train the face-recognition system in the ROI area. Every area of attention face must be appended to a variable named x train. We then feed the recognizer with our training data using the area of attention values and Face ID data. The information gathered will be archived.
for (x,y,w,h) in faces:
roi = Final_Image[y:y+h, x:x+w]
x_train.append(roi)
y_ID.append(Face_ID)
recognizer.train(x_train, np.array(y_ID))
recognizer.save("face-trainner.yml")
You'll notice that the face-trainner.yml script is modified whenever you run this program. If you make any modifications to the photographs in the Face Images folder, ensure to recompile this code. Debugging purposes include printing out the Face ID, name of the path, name of a person, and NumPy arrays.
We can begin using our trained data to identify people now that it has been prepared. We'll use a USB webcam or pi camera to feed video into the Face recognizer application, turning it into an image. Once we've found the faces in those images, we'll find similarities to all of our previously developed Face IDs. Finally, we output the identified person’s name in boxes around their face. Afterwards, the whole program is presented, and the explanation is below.
Import the required module from the training program and use the classifier because we need to do more facial detection in this program.
import cv2
import numpy as np
import os
from time import sleep
from PIL import Image
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
recognizer = cv2.createLBPHFaceRecognizer()
The people listed in the folder should be entered in the variable named labels. Insist on performing each step in the same order. It is "Esther" and "Unknown" in my situation.
labels = ["Esther", "Unknown"]
We need the trainer file to detect faces, so we import it into our software.
recognizer.load("face-trainner.yml")
The camera provides the video stream. It's possible to access any second pi camera by replacing 0 with 1.
cap = cv2.VideoCapture(0)
In the next step, we separate the footage into images and transform it into grayscale, and afterwards, we search for a face in the photo. To save the area of attention grey image, we must first detect the face and then crop the image to remove them.
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5)
for (x, y, w, h) in faces:
roi_gray = gray[y:y+h, x:x+w]
id_, conf = recognizer.predict(roi_gray)
It informs us how sure the program is in its ability to identify the person. We write the code below to get the person's name based on their Identification number. A square should be drawn around the user's head, written outside their name.
if conf>=80:
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]
cv2.putText(img, name, (x,y), font, 1, (0,0,255), 2)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
We must playback and afterwards break the video stream we just evaluated, which is done by pressing a wait key.
cv2.imshow('Preview',img)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
While running this application, ensure the Raspberry is linked to a display via HDMI. A display with your video stream and the name will appear when you open the application. There will be a box around the face identified in the video feed, and if your software recognizes the face, it displays that person’s name. As evidenced by the image below, we've trained our software to identify my face, which shows the recognition process in action.
import cv2
import numpy as np
import os
from PIL import Image
labels = ["Esther", "Unknown"]
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
recognizer = cv2.createLBPHFaceRecognizer()
recognizer.load("face-trainner.yml")
cap = cv2.VideoCapture(0)
while(True):
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) #Recog. faces
for (x, y, w, h) in faces:
roi_gray = gray[y:y+h, x:x+w]
id_, conf = recognizer.predict(roi_gray)
if conf>=80:
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]
cv2.putText(img, name, (x,y), font, 1, (0,0,255), 2)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow('Preview',img)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
import cv2
import numpy as np
import os
from PIL import Image
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
recognizer = cv2.createLBPHFaceRecognizer()
Face_ID = -1
pev_person_name = ""
y_ID = []
x_train = []
Face_Images = os.path.join(os.getcwd(), "Face_Images")
print (Face_Images)
for root, dirs, files in os.walk(Face_Images):
for file in files:
if file.endswith("jpeg") or file.endswith("jpg") or file.endswith("png"):
path = os.path.join(root, file)
person_name = os.path.basename(root)
print(path, person_name)
if pev_person_name!=person_name:
Face_ID=Face_ID+1
pev_person_name = person_name
Gery_Image = Image.open(path).convert("L")
Crop_Image = Gery_Image.resize( (550,550) , Image.ANTIALIAS)
Final_Image = np.array(Crop_Image, "uint8")
faces = face_cascade.detectMultiScale(Final_Image, scaleFactor=1.5, minNeighbors=5)
print (Face_ID,faces)
for (x,y,w,h) in faces:
roi = Final_Image[y:y+h, x:x+w]
x_train.append(roi)
y_ID.append(Face_ID)
recognizer.train(x_train, np.array(y_ID))
recognizer.save("face-trainner.yml")
Since the "How to operate DC motor in Rpi 4" guide has covered the basics of controlling a DC motor, I won't provide much detail here. Please read this topic if you haven't already. Check all the wiring before using the batteries in your circuit, as outlined in the image above. Everything must be in place before connecting your breadboard's power lines to the battery wires.
To activate the motors, open the terminal because you'll use the Python code-writing program called Nano in this location. For those of you who aren't familiar with the command-line text editor known as Nano, I'll show you how to use some of its commands as we go.
This code will activate the motor for two seconds, so try it out.
import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BOARD)
Motor1A = 16
Motor1B = 18
Motor1E = 22
GPIO.setup(Motor1A,GPIO.OUT)
GPIO.setup(Motor1B,GPIO.OUT)
GPIO.setup(Motor1E,GPIO.OUT)
print "Turning motor on"
GPIO.output(Motor1A,GPIO.HIGH)
GPIO.output(Motor1B,GPIO.LOW)
GPIO.output(Motor1E,GPIO.HIGH)
sleep(2)
print "Stopping motor"
GPIO.output(Motor1E,GPIO.LOW)
GPIO.cleanup()
The very first two lines of code tell Python whatever the program needs.
The RPi.GPIO package is what the first line is looking for. The RPi GPIO pins are controlled by this module, which takes care of all the grunt work.
It is necessary to delay the script for a few seconds to provide the package time to operate, therefore leaving a motor to run for a while.
The method set mode is used to leverage the RPi's board numbers. We'll tell Python that the pins 16 through 22 correspond to the motors.
Pin A is used to steer the L293D in one way, and pin B is used to direct it in the opposite direction. You can turn on the motor using an Enable pin, referred to as E, inside the test file.
Finally, use GPIO.OUT to inform the RPi that all these are outputs.
The RPi is ready to turn the motor after the software is set up. After a 2-second pause, some pins will be turned on and subsequently turned off, as seen in the code.
Save and quit by hitting CTRL-X, and a confirmation notice appears at the bottom. To acknowledge, tap Y and Return. You can now run the program in the terminal and watch as the motor begins to spin up.
sudo python motor.py
If the motor doesn't move, check the cabling or power supply. The debug process might be a pain, but it's an important phase in learning new things!
I'll teach you how to reverse a motor's rotation to spin in the opposite direction.
There's no need to touch the wiring at this point; it's all Python. Create a new script called motorback.py to accomplish this. Using Nano, type the command:
./script
Please type in the given program:
import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BOARD)
Motor1A = 16
Motor1B = 18
Motor1E = 22
GPIO.setup(Motor1A,GPIO.OUT)
GPIO.setup(Motor1B,GPIO.OUT)
GPIO.setup(Motor1E,GPIO.OUT)
print "Going forwards"
GPIO.output(Motor1A,GPIO.HIGH)
GPIO.output(Motor1B,GPIO.LOW)
GPIO.output(Motor1E,GPIO.HIGH)
sleep(2)
print "Going backwards"
GPIO.output(Motor1A,GPIO.LOW)
GPIO.output(Motor1B,GPIO.HIGH)
GPIO.output(Motor1E,GPIO.HIGH)
sleep(2)
print "Now stop"
GPIO.output(Motor1E,GPIO.LOW)
GPIO.cleanup()
Save by pressing CTRL, then X, then Y, and finally Enter key.
For reverse compatibility, we've set Motor1A low in the script.
Programmers use the terms "high" and "low" to denote the state of being on or off, respectively.
Motor1E will be turned off to halt the motor.
Irrespective of what A is doing; the motor can be turned on or off using the Enable switch.
Take a peek at the Truth Table to understand better what's going on.
When Enabled, only two states allow the motor to move; A or B is high, and not both high at the same time.
At this point, we have designed our face detection system and the dc motor control circuit; now, we will put the two systems to work together. When the user is verified, the dc motor should run to open the cd rom drive and close after a few seconds.
In our verify code, we will copy the code below to spin the motor in one direction “open the door” when the user is verified. We will also increase the time to 5 seconds to simulate the door's time to open for the user to get through. This also allows the motor to spin long enough to open and close the cd room completely. I would also recommend putting a stopper on the cd room door so that it doesn't close all the war and get stuck.
if conf>=80:
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_] #Get the name from the List using ID number
cv2.putText(img, name, (x,y), font, 1, (0,0,255), 2)
#place our motor code here
GPIO.setmode(GPIO.BOARD)
Motor1A = 16
Motor1B = 18
Motor1E = 22
GPIO.setup(Motor1A,GPIO.OUT)
GPIO.setup(Motor1B,GPIO.OUT)
GPIO.setup(Motor1E,GPIO.OUT)
Print("Openning")
GPIO.output(Motor1A,GPIO.HIGH)
GPIO.output(Motor1B,GPIO.LOW)
GPIO.output(Motor1E,GPIO.HIGH)
sleep(5)
print("Closing")
GPIO.output(Motor1A,GPIO.LOW)
GPIO.output(Motor1B,GPIO.HIGH)
GPIO.output(Motor1E,GPIO.HIGH)
sleep(5)
print("stop")
GPIO.output(Motor1E,GPIO.LOW)
GPIO.cleanup()
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
An individual's biometric identity can be verified by looking at various physical and behavioural characteristics, such as a person's fingerprint, keystrokes, facial characteristics, and voice. Face recognition seems to be the winner because of the precision, simplicity, and lack of contact detection.
Face-recognition technology will continue and will get better over time. The tale has evolved, and your alternatives have grown due to smart tech.
Using an RPi as a surveillance system means you can take it with you and use it wherever you need it.
For the most part, the face-recognition software employed in security systems can reliably assess whether or not the individual attempting entry matches your record of those authorized to enter. On the other hand, certain computer programs are more precise when it comes to identifying faces from diverse angles or different countries.
Concerned users may be relieved to learn that some programs have the option of setting custom confidence criteria, which can significantly minimize the likelihood of the system giving false positives. Alternatively, 2-factor authentication can be used to secure your account.
When your smart security system discovers a match between a user and the list of persons you've given access to, it will instantly let them in. Answering the doorbell or allowing entry isn't necessary.
Face recognition solutions can be readily integrated into existing systems using an API.
A major drawback of face recognition technology is that it puts people's privacy at risk. Having one's face collected and stored in an unidentified database does not sit well with the average person.
Confidentiality is so important that several towns have prohibited law enforcement from using real-time face recognition monitoring. Rather than using live face recognition software, authorities can use records from privately-held security cameras in certain situations.
Having your face captured and stored by face recognition software might make you feel monitored and assessed for your actions. It is a form of criminal profiling since the police can use face recognition to put everybody in their databases via a virtual crime lineup.
This article walked us through creating a complete Smart Security System using a facial recognition program from the ground up. Our model can now recognize faces with the help of OpenCV image manipulation techniques. There are several ways to further your knowledge of supervised machine learning programming with raspberry pi 4, including adding an alarm to ring whenever an individual's face is not recognized or creating a database of known faces to act like a CCTV surveillance system. We'll design a security system with a motion detector and an alarm in the next session.
First, we will design a database for our website, then we will design the RFID circuit for scanning the student cards and displaying present students on the webpage, and finally, we will design the website that we will use to display the attendees of a class.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Breadboard | Amazon | Buy Now | |
2 | Jumper Wires | Amazon | Buy Now | |
3 | LCD 16x2 | Amazon | Buy Now | |
4 | LCD 16x2 | Amazon | Buy Now | |
5 | Raspberry Pi 4 | Amazon | Buy Now |
Additionally, the Database server offers a DBMS that can be queried and connected to and can integrate with a wide range of platforms. High-volume production environments are no problem for this software. The server's connection, speed, and encryption make it a good choice for accessing the database.
There are clients and servers for MySQL. This system contains a SQL server with many threads that support a wide range of back ends, utility programs, and application programming interfaces.
We'll walk through the process of installing MySQL on the RPi in this part. The RFID kit's database resides on this server, and we'll utilize it to store the system's signed users.
There are a few steps before we can begin installing MySQL on a Raspberry Pi. There are two ways to accomplish this.
sudo apt update
sudo apt upgrade
Installing the server software is the next step.
Here's how to get MySQL running on the RPi using the command below:
sudo apt install MariaDB-server
Having installed MySQL on the Raspberry Pi, we'll need to protect it by creating a passcode for the "root" account.
If you don't specify a password for your MySQL server, you can access it without authentication.
Using this command, you may begin safeguarding MySQL.
sudo mysql_secure_installation
Follow the on-screen instructions to set a passcode for the root account and safeguard your MySQL database.
To ensure a more secured installation, select "Y" for all yes/no questions.
Remove elements that make it easy for anyone to access the database.
We may need that password to access the server and set up the database and user for applications like PHPMyAdmin.
For now, you can use this command if you wish to access the Rpi's MySQL server and begin making database modifications.
sudo MySQL –u root -p
To access MySQL, you'll need to enter the root user's password, which you created in Step 3.
Note: Typing text will not appear while typing, as it does in typical Linux password prompts.
Create, edit, and remove databases with MYSQL commands now available. Additionally, you can create, edit, and delete users from inside this interface and provide them access to various databases.
After typing "quit;" into MySQL's user interface, you can exit the command line by pressing the ESC key.
Pressing CTRL + D will also exit the MYSQL command line.
You may proceed to the next step now that you've successfully installed MySQL. In the next few sections, we'll discuss how to get the most out of our database.
The command prompt program MySQL must be restarted before we can proceed with creating a username and database on the RPi.
The MySQL command prompt can be accessed by typing the following command. After creating the "root" user, you will be asked for the password.
To get things started, run the command to create a MySQL database.
The code to create a database is "CREATE DATABASE", and then the name we like to give it.
This database would be referred to as "rfidcardsdb" in this example.
To get started, we'll need to create a MySQL user. The command below can be used to create this new user.
"rfidreader" and "password" will be the username and password for this example. Take care to change these when making your own.
create user “rfidreader" @localhost identified by "password."
We can now offer the user full access to the database after it has been built.
Thanks to this command, " "rfidreader" will now have access to all tables in our "rfidcardsdb" database.
grant all on rfidcardsdb.* to "rfidreader" identified by "password."
We have to flush the permission table to complete our database and user set up one last time. You cannot grant access to the database without flushing your privilege table.
The command below can be used to accomplish this.
Now we have our database configured, and now the next step is to set up our RFID circuit and begin authenticating users. Enter the “Exit” command to close the database configuration process.
An RFID reader reads the tag's data when a Rfid card is attached to a certain object. An RFID tag communicates with a reader via radio waves.
In theory, RFID is comparable to bar codes in that it uses radio frequency identification. While a reader's line of sight to the RFID tag is preferable, it is not required to be directly scanned by the reader. You can't read an RFID tag that is more than three feet away from the reader. To quickly scan a large number of objects, the RFID tech is used, and this makes it possible to identify a specific product rapidly and effortlessly, even if it is sandwiched between several other things.
There are major parts to Cards and tags: an IC that holds the unique identifier value and a copper wire that serves as the antenna:
Another coil of copper wire can be found inside the RFID card reader. When current passes through this coil, it generates a magnetic field. The magnetic flux from the reader creates a current within the wire coil whenever the card is swiped near the reader. This amount of current can power the inbuilt IC of the Card. The reader then reads the card's unique identifying number. For further processing, the card reader transmits the card's unique identification number to the controller or CPU, such as the Raspberry Pi.
Connect the reader to the Raspberry the following way:
use the code spi bcm2835 to see if it is displayed in the terminal.
lsmod | grep spi
SPI must be enabled in the setup for spi bcm2835 to appear (see above). Make sure that RPi is running the most recent software.
Make use of the python module.
sudo apt-get install python
The RFID RC522 can be interacted with using the Library SPI Py, found on your RPi.
cd ~
git clone https://github.com/lthiery/SPI-Py.git
cd ~/SPI-Py
sudo python setup.py install
cd ~
git clone https://github.com/pimylifeup/MFRC522-python.git
To test if the system is functioning correctly, let's write a small program:
cd ~/
sudo nano test.py
now copy the following the code into the editor
import RPi.GPIO as GPIO
import sys
sys.path.append('/home/pi/MFRC522-python')
from mfrc522 import SimpleMFRC522
reader = SimpleMFRC522()
print("Hold a tag near the reader")
try:
id, text = reader.read()
print(id)
print(text)
finally:
GPIO.cleanup()
Here we will write a short python code to register users whenever they swipe a new card on the RFID card reader. First, create a file named addcard.py.
copy the following code.
import pymysql
import cv2
from mfrc522 import SimpleMFRC522
import RPi.GPIO as GPIO
import drivers
display = drivers.Lcd()
display.lcd_display_string('Scan your', 1)
display.lcd_display_string('card', 2)
reader = SimpleMFRC522()
reader = SimpleMFRC522()
id, text = reader.read()
display = drivers.Lcd()
display.lcd_display_string('Type your name', 1)
display.lcd_display_string('in the terminal', 2)
user_id = input("user name?")
# put serial_no uppercase just in case
serial_no = '{}'.format(id)
# open an sql session
sql_con = pymysql.connect(host='localhost', user='rfidreader', passwd='password', db='rfidcardsdb')
sqlcursor = sql_con.cursor()
# first thing is to check if the card exist
sql_request = 'SELECT card_id,user_id,serial_no,valid FROM cardtbl WHERE serial_no = "' + serial_no + '"'
count = sqlcursor.execute(sql_request)
if count > 0:
print("Error! RFID card {} already in database".format(serial_no))
display = drivers.Lcd()
display.lcd_display_string('The card is', 1)
display.lcd_display_string('already registered', 2)
T = sqlcursor.fetchone()
print(T)
else:
sql_insert = 'INSERT INTO cardtbl (serial_no,user_id,valid) ' + \
'values("{}","{}","1")'.format(serial_no, user_id)
count = sqlcursor.execute(sql_insert)
if count > 0:
sql_con.commit()
# let's check it just in case
count = sqlcursor.execute(sql_request)
if count > 0:
print("RFID card {} inserted to database".format(serial_no))
T = sqlcursor.fetchone()
print(T)
display = drivers.Lcd()
display.lcd_display_string('Congratulations', 1)
display.lcd_display_string('You are registered', 2)
GPIO.cleanup()
The program starts by asking the user to scan the card.
Then it connects to the database using the pymysql.connect function.
If we enter our name successfully, the program inserts our details in the database, and a congratulations message is displayed to show that we are registered.
Using the LCD command library, you can:
sudo apt install git
cd /home/pi/
git clone https://github.com/the-raspberry-pi-guy/lcd.git
cd lcd/
sudo ./install.sh
After installation is complete, try running one of the program files
cd /home/pi/lcd/
Next, we will install the mfrc522 library, which the RFID card reader uses. This will enable us to read the card number for authentication. We will use:
Pip install mfrc522
Next, we will import the RPI.GPIO library enables us to utilize the raspberry pi pins to power the RFID card and the LCD screen.
Import RPi.GPIO
We will also import the drivers for our LCD screen. The LCD screen used here is the I2C 16 * 2 LCD.
Import drivers
Then we will import DateTime for logging the time the user has swiped the card into the system.
Import DateTime
In order to read the card using the rfid card, we will use the following code:
reader = SimpleMFRC522()
display = drivers.Lcd()
display.lcd_display_string('Hello Please', 1)
display.lcd_display_string('Scan Your ID', 2)
try:
id, text = reader.read()
print(id)
display.lcd_clear()
finally:
GPIO.cleanup()
The LCD is divided into two rows, 1 and 2. To display text in the first row, we use:
Display.lcd_display_string(“string”,1)
And 2 to display in the second row.
After scanning the card, we will connect to the database we created earlier and search whether the scanned card is in the database or not.
If the query is successful, we can display if the card is in the database; if not, we can proceed, then the user needs to register the card.
If the user is registered, the system saves the logs, the username and the time the card was swapped in a text file located in the/var/www/html root directory of the apache server.
Note that you will need to be a superuser to create the data.txt file in the apache root directory. For this, we will use the following command in the Html folder:
Sudo touch data.txt
Then we will have to change the access privileges of this data.txt file to use the program to write the log data. For this, we will use the following code:
Sudo chmod 777 –R data.txt
The next step will be to display this data on a webpage to simulate an online attendance register. The code for the RFID card can be found below.
#! /usr/bin/env python
# Import necessary libraries for communication and display use
import RPi.GPIO as GPIO
from mfrc522 import SimpleMFRC522
import pymysql
import drivers
import os
import numpy as np
import datetime
# read the card using the rfid card
reader = SimpleMFRC522()
display = drivers.Lcd()
display.lcd_display_string('Hello Please', 1)
display.lcd_display_string('Scan Your ID', 2)
try:
id, text = reader.read()
print(id)
display.lcd_clear()
# Load the driver and set it to "display"
# If you use something from the driver library use the "display." prefix first
try:
sql_con = pymysql.connect(host='localhost', user='rfidreader', passwd='password', db='rfidcardsdb')
sqlcursor = sql_con.cursor()
# first thing is to check if the card exist
cardnumber = '{}'.format(id)
sql_request = 'SELECT user_id FROM cardtbl WHERE serial_no = "' + cardnumber + '"'
now = datetime.datetime.now()
print("Current date and time: ")
print(str(now))
count = sqlcursor.execute(sql_request)
if count > 0:
print("already in database")
T = sqlcursor.fetchone()
print(T)
for i in T:
print(i)
file = open("/var/www/html/data.txt","a")
file.write(i +" Logged at "+ str(now) + "\n")
file.close()
display.lcd_display_string(i, 1)
display.lcd_display_string('Logged In', 2)
else:
display.lcd_clear()
display.lcd_display_string(“Please register”, 1)
display.lcd_display_string(cardnumber,2)
except KeyboardInterrupt:
# If there is a KeyboardInterrupt (when you press ctrl+c), exit the program and cleanup
print("Cleaning up!")
display.lcd_clear()
finally:
GPIO.cleanup()
Now we are going to design a simple website with Html that we are going to display the information of the attending students of a class, and to do this, we will have to install a local server in our raspberry pi.
Web, database, and mail servers all run on various server software. Each of these programs can access and utilize files located on a physical server.
A web server's main responsibility is to provide internet users access to various websites. It serves as a bridge between a server and a client machine to accomplish this. Each time a user makes a request, it retrieves data from the server and posts it to the web.
A web server's largest issue is to simultaneously serve many web users, each of whom requests a separate page.
For internet users, convert them to Html pages and offer them in the browser. Whenever you hear the term "webserver," consider the device in charge of ensuring successful communication in a network of computers.
Among its responsibilities is establishing a link between a server and a client's web browser (such as Chrome to send and receive data (client-server structure). As a result, the Apache software can be used on any platform, from Microsoft to Unix.
Visitors to your website, such as those who wish to view your homepage or "About Us" page, request files from your server via their browser, and Apache returns the required files in a response (text, images, etc.).
Using HTTP, the client and server exchange data with the Apache webserver, ensuring that the connection is safe and stable.
Because of its open-source foundation, Apache promotes a great deal of customization. As a result, web developers and end-users can customize the source code to fit the needs of their respective websites.
Additional server-side functionality can be enabled or disabled using Apache's numerous modules. Encryption, password authentication, and other capabilities are all available as Apache modules.
To begin, use the following code to upgrade the Pi package list.
sudo apt-get update
sudo apt-get upgrade
After that, set up the Apache2 package.
sudo apt install apache2 -y
That concludes our discussion. You can get your Raspberry Pi configured with a server in just two easy steps.
Type the code below to see if the server is up and functioning.
sudo service apache2 status
You can now verify that Apache is operating by entering your Raspberry Pi's IP address into an internet browser and seeing a simple page like this.
Use the following command in the console of your Raspberry Pi to discover your IP.
hostname-i
Only your home network and not the internet can access the server. You'll need to configure your router's port forwarding to allow this server to be accessed from any location. Our blog will not be discussing this topic.
The standard web page on the Raspberry Pi, as depicted above, is nothing more than an HTML file. First, we will generate our first Html document and develop a website.
Let's start by locating the Html document on the Raspbian system. You can do this by typing the following code in the command line.
cd /var/www/html
To see a complete listing of the items in this folder, run the following command.
ls -al
The root account possesses the index.html file; therefore, you'll see every file in the folder.
As a result, to make changes to this file, you must first change the file's ownership to your own. The username "pi" is indeed the default for the Raspberry Pi.
sudo chown pi: index.html
To view the changes you've made, all you have to do is reload your browser after saving the file.
Here, we'll begin to teach you the fundamentals of HTML.
To begin a new page, edit the index.html file and remove everything inside it using the command below.
sudo nano index.html
Alternatively, we can use a code editor to open the index.html file and edit it. We will use VS code editor that you can easily install in raspberry pi using the preferences then recommended software button.
You must first learn about HTML tags, which are a fundamental part of HTML. A web page's content can be formatted in various ways by using tags.
There are often two tags used for this purpose: the opening and closing tags. The material inside these tags behaves according to what these tags say.
The p> tag, for example, is used to add paragraphs of text to the website.
<p>The engineering projects</p>
Web pages can be made more user-friendly by using buttons, which can be activated anytime a user clicks on them.
<button>Manual Refresh</button>
<button>Sort By First Name</button>
<button>Sort By last Name</button>
A typical HTML document is organized as follows:
Let us create the page that we will use in this project.
<html>
<head>
</head>
<body>
<div id="pageDiv">
<p> The engineering projects</p>
<button type="button" id="refreshNames">Manual Refresh</button><br/>
<button type="button" id="firstSort">Sort By First Name</button><br/>
<button type="button" id="lastSort">Sort By Last Name</button>
<div id="namesFromFile">
</div>
</div>
</body>
</html>
<!DOCTYPE html>: HTML documents are identified by this tag. This does not necessitate the use of a closing tag.
<html>: This tag ensures that the material inside will meet all of the requirements for HTML. There is a /html> tag at the end of this.
</head>: It contains data about the website, but when you view it in a browser, you won't be able to see anything.
A metadata tag in the head tag can be used to set default character encoding in your website, for instance. This has a /head> tag at the end of it.
<head>
<meta charset="utf-8">
</head>
Also, you can have a title tag inside the head tag. This tag sets the title of your web page and has a closing </title> tag.
<head>
<meta charset="utf-8">
<title> My website </title>
</head>
<body>: The primary focus of the website page is included within this tag. Everything on a web page is usually contained within body tags once you've opened it. This has a /body> tag at the end of it. Many other tags can be found in this body tag, but we'll focus on the ones you need to get started with your first web page.
We will go ahead and style our webpage using CSS with the lines of codes below;
<head>
<!--
body {
width:100%;
background:#ccc;
color:#000;
text-align:left;
margin:0
;padding:10px
;font:16px/18pxArial;
}
button {
width:160px;
margin:0 0 10px;}
#pageDiv {
width:160px;
margin:20px auto;
padding:20px;
background:#ddd;
color:#000;
}
#namesFromFile {
margin:20px 0 0;
padding:10px;
background:#fff;
color:#000;
border:1px solid #000;
border-radius:10px;
}
-->
</style>
</head>
The style tags is a cascading style sheet syntax that lets developers style the webpages however they prefer.
You can add images to your web page by using the <img> tag. It is also a void element and doesn’t have a closing tag. It takes the following format
<img src="URL of image location">
For example, let’s add an image of the Seeeduino XIAO
<p>The Engineering projects</p>
<img src="https://www.theengineeringprojects.com/wp-content/uploads/2022/04/TEP-Logo.png">
Reload the browser to see the changes
This is the last step of this project, and we will implement a program that reads our data.txt file from the apache root directory and display it on the webpage that we designed. Since we already have our webpage up and running, we will use the javascript programming language to implement this function of displaying the log list on the webpage. All changes that we are about to implement will be done in the index.html file; therefore, open it in the visual studio code editor.
JavaScript is a dynamic computer programming language. It is lightweight and most commonly used as a part of web pages, whose implementations allow client-side scripts to interact with the user and make dynamic pages. It is an interpreted programming language with object-oriented capabilities.
One of the major strengths of JavaScript is that it does not require expensive development tools. You can start with a simple text editor such as Notepad.
Well, javascript as mentioned earlier is a very easy to use language that simply requires us to put the script tags inside the html tags.
<script> script program </script>
<header>
<script>
Here goes our javascript program
</script>
</header>
The javascript code first opens the data.txt file, then it reads all the contents form that file. Then it uses the xmlHttpRequest function to display the contents on the webpage. The buttons on the webpage activate different functions in the code.For instance manual refresh activates:
function refreshNamesFromFile(){
var namesNode=document.getElementById("namesFromFile");
while(namesNode.firstChild)
{ namesNode.removeChild(namesNode.firstChild);
}
getNameFile();
}
This function reads the content of the data.txt
The sort by buttons activate the sort function to sort the logged users either by first name or last name. The function that gets activated by these buttons is:
function sortByName(e)
{ var i=0, el, sortEl=[], namesNode=document.getElementById("namesFromFile"), sortMethod, evt, evtSrc, oP;
evt=e||event;
evtSrc=evt.target||evt.srcElement;
sortMethod=(evtSrc.id==="firstSort")?"first":"last";
while(el=namesNode.getElementsByTagName("P").item(i++)){
sortEl[i-1]=[el.innerHTML.split(" ")[0],el.innerHTML.split(" ")[1]];
}
sortEl.sort(function(a,b){
var x=a[0].toLowerCase(), y=b[0].toLowerCase(), s=a[1].toLowerCase(), t=b[1].toLowerCase();
if(sortMethod==="first"){
return x<y?-1:x>y?1:s<t?-1:s>t?1:0;
}
else{
return s<t?-1:s>t?1:x<y?-1:x>y?1:0;
}
});
while(namesNode.firstChild){
namesNode.removeChild(namesNode.firstChild);
}
for(i=0;i<sortEl.length;i++){
oP=document.createElement("P");
namesNode.appendChild(oP).appendChild(document.createTextNode(sortEl[i][0]+" "+sortEl[i][1]));
namesNode.appendChild(document.createTextNode("\r\n"));
//insert tests -> for style/format
if(sortEl[i][0]==="John"){
oP.style.color="#f00";
}
if(sortEl[i][0]==="Sue")
{ oP.style.color="#0c0";
oP.style.fontWeight="bold";
}
}
}
Automated attendance systems are excessively time-consuming and sophisticated in the current environment. It is possible to strengthen company ethics and work culture by using an effective smart attendance management system. Employees will only have to complete the registration process once, and images get saved in the system's database. The automated attendance system uses a computerized real-time image of a person's face to identify them. The database is updated frequently, and its findings are accurate in a user interactive state because each employee's presence is recorded.
Smart attendance systems have several advantages, including the following:
Students in elementary, secondary, and postsecondary institutions can utilize this system to keep track of their attendance. It can also keep track of workers' schedules in the workplace. Instead of using a traditional method, it uses RFID tags on ID cards to quickly and securely track each person.
1) Real-time tracking – Keeping track of staff attendance using mobile devices and desktops is possible.
2)Decreased errors – A computerized attendance system can provide reliable information with minimal human intervention, reducing the likelihood of human error and freeing up staff time.
3) Management of enormous data – It is possible to manage and organize enormous amounts of data precisely in the db.
4) Improve authentications and security – A smart system has been implemented to protect the privacy and security of the user's data.
5) Reports – Employee log-ins and log-outs can be tracked, attendance-based compensation calculated, the absent list may be viewed and required actions are taken, and employee personal information can be accessed.
This tutorial taught us to build a smart RFID card authentication project from scratch. We also learned how to set up an apache server and design a circuit for the RFID and the LCD screen. To increase your raspberry programming skills, you can proceed to building a more complex system with this code for example implementing face detection that automatically starts the authentication process once the student faces the camera or implement a student log out whenever the student leaves the system. In the following tutorial, we will learn how to build a smart security system using facial recognition.
Welcome to the next tutorial of our Raspberry Pi programming course. Our previous tutorial taught us how to use a raspberry pi as a DNS server. We also looked at the benefit of this DNS server. This tutorial will teach us to set up Raspberry pi as a VPN server.
This is an excellent method for increasing your network security and getting access to your local area network from the world wide web, but setting up your VPN server might be a challenge. Pi VPN uses a guided install to turn your Raspberry into a low-cost, high-performance VPN server.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
It is an OpenVPN server optimized for all Raspberry platforms above pi 2. It allows you to access your home network over the internet safely and securely. Smart devices and your network can be connected via a "bridge" created by connecting a Raspberry Pi to your router.
A virtual private network (VPN) is a secure option if you frequently use your router to forward traffic. Anyone can gain access to your network through any of the ports you forward. For maximum network security, use Pi VPN, which only exposes a single port and employs industry-standard encryption algorithms.
Selecting a virtual private network service is critical before you begin this project. It would be best to bear in mind cybersecurity, bandwidth, and delay when making this decision.
Ensure that your Virtual private network supplier doesn't record how you use their services. Nevertheless, speed and delay are critical here.
As a result, we've decided to go with IPVanish in this project. When it comes to network latency and network bandwidth, IPVanish is among the best.
The Raspberry Pi can get the best out of the device with a wired or wireless connection.
Use the Interfacing settings menu to turn on the secure shell service in RPi Settings. The configuration tool can be launched from the Pi menu or with the following command:
You can disconnect your display and switch off your desktop once your Pi hooks to your local network via a secure shell. It's simple to use a program like Putty or the terminal on your Mac to access your RPi.
You will not have to use a monitor to manage your Pi virtual private network server. A Raspberry Pi can be accessed from another device using SSH.
Use the ifconfig command to display your Raspberry IP address before unplugging it from the monitor.
If you configure your Raspberry Pi VPN server on Windows, you should use Putty.
Login to the RPi using the Internet protocol address noted earlier when Putty runs. Check to see if the secure shell is for the connection type. To save this connection to your profile, click the Save button.
You don't need a secure shell client if you're using a Macintosh or Linux computer to install Pi VPN. SSH is in your operating system's terminal, so you don't need to do anything extra.
A security key is saved on your Raspberry Pi the first time you access the raspberry pi. Accept the key and store it on your computer by pressing the Yes option on the screen.
Your password must be entered next. You'll be logged in as Raspberry Pi as long as you haven't changed the default password on your Raspberry
The prompt pi@hostname shows a successful login.
Begin by obtaining a list of the most recent applications. Using the command: you can see if any installed programs are up to date.
When it comes to network services, you will have to locate your RPi, implying that you will set up a static Ip before you begin using the app. Also, modify your hostname at this point. When you get access, you'll notice a difference in the prompt. It's a simple way to distinguish between several Pis, but you can always change your hostname.
To establish a static Ip, you'll have to update the configuration file /etc/dhcpcd.conf. Before opening the file, know your router's Internet protocol address and Domain name system. This data is available using the ifconfig utility.
Take advantage of this command when you're ready to edit its config script:
To find an example of static IP configuration, look for the line with the label Sample static IP config inside the file. Simply remove the example comments and replace your Ip, routers, and gateway with your own to get started.
If you prefer a static IP address, remove the comment from it and replace it with the desired value.
Your custom values should be provided for static IP and DNS.
To alter your hostname, run the command below as superuser to open /etc/hostname in nano:
When finished, use Ctrl+X to close the editor. Then, press Yes to save the changes.
The /etc/hosts file must be edited in the same way. The file editing command is:
Change your hostname from 127.0.0.1 to whatever you've selected. Use the command below to force a reboot of your Raspberry Pi:
You should always change your connection's IP address after restarting your Raspberry Pi to reflect its new static address.
In Linux distributions, firewalls are embedded in kernels and will activate by default in Raspbian. The default setting for a new installation is to leave it unlocked.
There are no restrictions on inbound or outbound packets, and the firewall forwards any requests. Before securing the firewall, make sure it is entirely accessible.
Use iptables -L to see if your firewall protocols match. It's possible to return the firewall to its default settings using the following commands:
During configuring the Raspberry virtual private network, you will select the level of encryption. What you need to remember is the following:
Allowing 4096-bit is enticing for those who stream film or music; however, it will add a significant amount of overhead and slows down your connection significantly. For the most part, we use 2048-bit encryption, which is the industry standard.
You'll inevitably stumble across a peculiarity in a secure shell. For more prolonged operations, if you are using SSH to communicate with the Raspberry, the connection is lost whenever the desktop hibernates. Any pi commands running stop working whenever a secure shell connection is lost; therefore, you must re-enter it.
A screen is an excellent tool for dealing with long SSH processes. One task might be the only focus of your screen sessions. Afterwards, you'll be able to join and disconnect at will and return to your session to see how it progresses.
Once Screen installs, you will need only a handful of commands to get the most out of it. Use apt to install screen utility as a starting point:
Once Screen installs, run it by typing the following command into your terminal window:
Even if nothing has changed, the commands you issue will continue to run even if you disconnect.
Whenever your Raspberry Pi connection stops, simply re-SSH in and type:
If only one secure shell session is open, you'll immediately get reconnected.
The Pi VPN works once you have your Raspberry working. It's the first step in a multi-part installation that will grant you access to Pi's virtual private network backend capability. Setting up an outgoing virtual private network tunnel connection for privacy will be done in the following steps.
Configure the Pi VPN via a command-line utility called curl, which you download from the company's website. You don't even need a browser to use curl to download from the internet.
Pi VPN installs using the following command:
You can obtain the installation package and feed it into bash for execution using this command.
Instantly, the procedure of installation begins. It begins by scanning for any packages that need updating on your system. Your system should be the latest version
to proceed.
Launch the pi VPN installation after meeting a few pre-requisites.
To get the most out of your SSH session, you should use the Pi Virtual private network Installer. We can get started when the Screen changes colour to blue, and an installer notification appears.
Start by pressing Enter to begin the VPN setup procedure.
Static IP addresses are required, and in case you do not have any, you will get a notice. If you have not already done so, head back to the previous section and finish configuring a static IP address.
The Ip that Raspberry Virtual private network detects displays to you. Click the Yes if it is correct.
IP address conflicts display for your attention. Static IP addresses outside the dynamic host configuration protocol range are the safest method of avoiding conflicts with other devices on your network.
To continue, simply press the OK button.
Set the raspberry user, then click the OK to proceed with installing your preferred software.
If you want your Raspberry virtual private network server to get automatic security upgrades, you should select Yes when prompted. Because port forwarding makes your Pi vulnerable to the internet, Pi VPN must be updated.
Make sure you conduct frequent updates manually if you select "No."
After activating automatic updates, it's usual to see the console for some time. You can expect another installation attempt in the next few seconds.
You'll want to use the UDP protocol while setting up a Pi VPN for most circumstances. If you're going to use a VPN subscription service to establish a highly secure two-hop connection, stick with TCP instead of UDP.
The default port you're using for the virtual private network will come in handy later.
UDP uses port 1194 by default, whereas TCP uses port 443. Do not use port 443 when configuring the double-hop virtual private network because it will end up causing a conflict afterwards. Instead, we use TCP port 4430.
Select the encryption type you want at this point. Earlier, we explained why you might choose each option and why you should do so. If you're still undecided, refer back to what we discussed.
Using the space bar, choose the encryption you want to employ and press OK. Streaming video is only possible with 2048-bit encryption.
It may take some time to generate these keys. It will take significantly longer if you're encrypting at a high level. Wait for Pi VPN to produce your server keys.
The Raspberry Virtual private network setup procedure is nearly complete once the server key generates. After a few more stages, you'll be able to establish a connection.
If you do not have a domain Name system account, choose the public IP. In this case, we will need to input your hostname and domain name system account settings as usual if we are using a Dynamic domain name system.
You will need to select a domain name server provider for your virtual private network. Google is recommended to most people because it is free and straightforward. If you're concerned about DNS leakages, OpenDNS offers safe DNS solutions. If you plan to use Pi-hole to handle DNS requests, you may want to select Custom.
The installation will guide you through the process of adding additional users using the command line. Install a web app for managing users in the following phase. Additionally, pivpn add is an option.
Select Yes and restart your Raspberry Pi.
There is a Pi Virtual private network Graphical interface for Pi VPN. Using it simplifies the process of adding new devices and users.
When you add a new user to the VPN, a *.ovpn profile generates. In addition to creating a user account, you may efficiently utilize the Pi Virtual private network GUI to download the profiles.
If you don't want to utilize the Pi Virtual private network GUI, you can use the following to add or delete users.
Adding a repository is necessary if you want the Pi VPN GUI's required software to be easily accessible. Let me show you how.
Edit apt's source list with nano. The directive is:
Add the lines below to the sources. Make a list of everything you can find:
This will inform apt that Raspberry can install packages. Debian stretch repositories do not currently contain some of the required third-party software Pi Virtual private network GUI uses.
It's not good to include a link to a previous build in the sources.list script, even though we currently need it. Once additional software installs, it may interfere with it. Once these software packages install, you can delete the line in the sources.list you just added.
Next, save the changes and exit the Nano application. Then update with the command below:
Once the check is complete, use the following command to install any new or updated packages:
All you have to do now is tell apt about the new repository. The Pi VPN Graphical interface pre-requisites can now install using the command:
When prompted, select "YES" and allow the setup to begin. Before using the Pi Virtual private network GUI, you must change some config files.
Make sure all of your pre-requisite software install before running the apt update.
The Pi Virtual private network GUI relies on an apache server to function effectively as a web application. However, we need to make a few adjustments before the Pi Virtual private network GUI start operating.
To begin, modify the user’s account under which apache executes. It runs as an unsupported account by default; therefore, we need to change it to the user pi. Use the following command to make changes to the Apache configuration file:
Find the line with $(APACHE RUN USER)
To exit and save, use Ctrl+X.
You'll also want to give yourself complete control over the /var directory, where Apache stores all of its web pages. Use the following command to grant pi complete control over the webroot directory:
Run the following command to move to the /var/www/HTML folder:
The raspberry pi should install the Pi Virtual private network Interface from that location.
After troubleshooting, downloading and installing the raspberry virtual private network graphical user interface is a breeze. You only need to use git to check out the project. You've already installed the git software if you've been following along.
Then run the following command from the HTML folder.
The command below will utilize git to copy the Pi Virtual private network GUI project folder into the directory of your apache server so that it is accessible as a web page. With a quick check-in of your browser, you can verify that the installation went smoothly.
You can now launch the Pi Virtual private network GUI from your internet browser and manage Pi Virtual private network users.
Use the Internet address that matches your setup and launch the Pi Virtual private network GUI from your internet browser.
Once a login screen appears, you've successfully connected to the network. For the time being, simply save a link to the Pi Virtual private network GUI for quick access. Setting up an outgoing VPN connection is the next step in protecting your online activity. If you don't want to utilize IPVanish, you may set up your router and add users without signing up for anything.
In the absence of an outbound Virtual private network, all traffic from all connected devices will use the public IP address of the local network to reach the worldwide web. The websites think that you are in the home network whenever you are connected. For example, you may wish to watch Netflix while away from home.
We recommend creating a "double-hop" connection with a VPN service outside the Pi virtual private network for the best results.
VPN connections with two hops allow for complete encryption whenever you access a site using HTTPS. Since the outgoing virtual private network server never notices the request source, the additional security offered by using two tunnels goes far beyond standard Virtual private network solutions.
If your Vpn service provider retains logs, they will not identify the devices from which each specific request was made. This additional layer of anonymity further obscures anything you do online.
Do not bother with this step if all you need is remote access to your local network via Pi's virtual private network. In contrast, if you're looking for safe and anonymous internet access for your mobile device, you can use an outgoing virtual private network connection and Raspberry virtual private network.
Due to its low latency, IPVanish is an excellent choice for establishing a double-hop virtual private network connection, requiring two separate virtual private network servers. Any OpenVPN profile-publishing VPN service will follow the same procedure.
Your VPN service's digital certificate and an autologin profile can be obtained below.
SSH onto your Raspberry Pi VPN server, then use wget to obtain the resources you need from the internet. Take a look at your Pi Virtual private network server and ensure it is online before using these instructions to obtain the data you require:
If you want to access the IPVanish server, you'll need to alter the uniform resource locator in the second field.
Make sure you rename the *.ovpn to use the OpenVPN service when connecting to IPVanish. Only profiles ending in *.conf can be connected to the network. Change the name of the file with the command below to outgoing.conf:
You can easily track two concurrent virtual private connections by renaming each interface.
The connection names will not change to or from between the two interfaces when renaming interfaces. To effectively configure your firewall, you must know the device's name.
If you go into the connection settings for each interface, you can modify the name. There is a *.config file for each OpenVPN connection linked with it. By altering the first few lines of each file, you can rename the network's graphical user interface.
To begin, run the command below to edit the Pi Virtual private network settings:
You should change the first line to:
Add a new line to the following:
Save your modifications by pressing Ctrl+X, then Y. /dev/tun-incoming will be created the next time the Pi Virtual private network is online.
Also, edit the OpenVPN outgoing configuration file.
Modify the first statement and add another at the start of the configuration file like before. In this case, the text should be as follows:
In addition, the outbound Virtual private network will need to be updated as well. Enter your name and password so that the Virtual private network can immediately connect to the server's cert you obtained in the previous stage.
To use the IPVanish server SSL certificate, make the necessary changes to the outgoing.conf file. Replace the word ca with:
Please use the following command to direct IPVanish to the password file we will create shortly: auth-user-pass
In addition, you must instruct your outbound virtual private network connection not to relay Local traffic. Your outgoing.conf file must have the following line added to it to allow access via Pi virtual private network to your home network:
Password files are now generated for use with IPVanish by OpenVPN.
Click Ctrl + X followed by the key to save the changes after entering your password and email address. You should encrypt the file because it holds your login details. With chmod, you can prevent anyone from accessing the password file in the OpenVPN configuration directory:
The root user can modify the password script file, which is the bare minimum level of protection required when keeping your login information in the clear text form.
Your Rpi should be configured correctly for the outgoing Virtual private network to encrypt your internet connection. The static IP address of your Raspberry Pi must be substituted if it is different.
You'll need to update or generate the file below and add some lines. The command is as follows:
Include the following two lines in your script:
We require only one change to the routing table of your Raspberry Pi. We can use incoming and outbound VPN connections simultaneously when you save the adjustments and restart your Raspberry Pi computer.
To ensure that your connection is genuinely safe, you must prevent DNS leaks. Using a Domain name server that isn't part of your virtual private network encrypted network results in a Domain name server leaks. For example, domain name server login and perform a man in the middle attack on your Virtual private network customers.
Forcing all incoming Virtual private network users to utilize the safe Domain name server from your outbound Vpn service provider is the solution.
OpenVPN config file is updated to change your domain name server without reinstalling the Pi Virtual private network. Use the following command to open the config file for editing:
The lines that send the Domain name server to your virtual private network clients are found by scrolling in the file.
When utilizing IPVanish, you need to replace these lines:
To identify the Domain name servers of a different Virtual private network, you'll need to research online. Save the file after editing it. As soon as the OpenVPN server starts up, your Virtual private network clients will connect automatically to secured servers provided by IPVanish.
OpenVPN should not connect automatically to the outbound virtual private network provider unless the connection is tested and verified. Type the following into the Run window:
The virtual private network connection status displays in the text on your screen. If you're having trouble connecting, double-check the outgoing configuration file and ensure your user information is in the password file on different lines. Hit Ctrl + C to exit the VPN once you've established a connection.
After the connection is tested and found to be working, you should automate the startup for your VPN tunnel. You can connect to every connection using OpenVPN by its configuration file name.
This command will edit the OpenVPN global config file, which you'll need to begin.
Undo this line's comments.
Change it to:
Afterwards, save your modifications and reboot your Raspberry virtual private network server:
A virtual private network is a tunnel from the wide-area network to the local area network. Consequently, your router must be configured to accept specific connections. If you have a router that doesn't support port forwarding, you may have to perform this manually.
If you didn't specify a port forward before, no Virtual private network clients would be able to access the network. We have to apply an exception to the security of our router's policies to allow these requests.
To access your router, copy its Internet address into your internet browser.
After logging in, go through the menus and select it from the list to enable port forwarding.
You'll have to remember the port number you previously chose in this process. Additionally, you'll need to know the static IP of your Raspberry Virtual private network server.
When you've completed port forwarding, click Save. VPN users can now access their accounts even if they are not in the local network.
This tutorial taught us to set up Raspberry pi as a virtual private network server. We also learned how to set up port forwarding and improve our network security. In the following tutorial, we will learn how to use a raspberry pi as a DNS server.
Welcome to the next tutorial of our Raspberry Pi programming course. Our previous tutorial taught us to set up a webserver in raspberry pi. We also looked at configuring addclient and deploying apps to our repositories. This tutorial will teach us to set up a free media server on Raspberry Pi.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
Even if you lack some of the expertise mentioned above and experience, we can still attempt to accomplish this task, and you will gain new knowledge in the process!
This can be done in a variety of ways. It's a mix of free and paid options. While we're here, we'll learn how to use the DLNA protocol to run a public media server on a Raspberry Pi. Let's get right down to business right away.
It's possible to store information in the form of files on a media server at a central location. It doesn't matter if it's a document, image, film, ebook, or scripting file stored on a conventional media server; everything it contains is a file. It merely allows you to store data in a more orderly fashion. Accessing data should necessitate you navigating it on your own.
A media server sits on top of the file server. Media items such as photos, music, and videos can be accessed with this application. In addition, it enables network playback. There's no need to worry about where the video files are kept. You don't have to do anything more than type in your questions and wait for the results to appear. For example, you can search for all the music by a particular artist or musician. These new features improve the media server's usability, manageability, and overall appeal.
Let's have a look at the DLNA, shall we? When it comes to digital living, DLNA (Digitized Living Network Alliance) is the acronym. SONY with Intel collaborated to create a multimedia transfer protocol standard. Its primary purpose is to set guidelines for media distribution via the Internet. Smart gadgets like android Tv, smartphones, and set-top boxes that can share multimedia content are all DLNA-compliant. Microsoft Media Player, VLC, and Plex will all be DLNA-enabled in the future.
Computers can now be used as multimedia servers thanks to the DLNA standard. A DLNA server and a DLNA client are necessary for DLNA to function. Media sharing is a server-to-client process that occurs at all times. Servers and clients cannot independently share material. Clients and servers are two terms you may hear used interchangeably. What do you think about their appearance? Any DLNA-enabled device can serve as a DLNA client. Smart devices that can stream media over the Internet are one example. Setting up a DLNA server does not necessitate a large server. Any of your friends can access it and set up their server with it. The Windows Player is capable of serving as a Digitized Living Network Alliance server. In addition, many NAS devices are equipped with DLNA server programs that allow users to view multimedia files stored on them. Free multimedia services can be built on the Raspberry Pi using the miniDLNA software.
Because of its small size, it can be run on any Raspberry model. Let us set up a miniDLNA service on our RPi and transfer multimedia files to external smart devices via the network.
A better grasp of the setup procedure is gained by splitting this topic into four primary subsections.
It's as easy to set up as any other application. Let's do an apt installation.
/mnt/data-ext4/ is where we'll create all of the directories we need for our demonstration purposes.
Inside the minidlna folder, we can write to a folder instead of root, as shown by the permissions below. In general, it's not a good idea to offer complete access to everyone. s Instead, new users and groups are created, and the ownership is transferred to them. Therefore, the database and logs are stored in this folder.
Ownership can be changed with the command shown. In the chown command, the user and the group are permitted to access the folder.
Minidlna folder ownership after the chown command is shown here.
Set up an entirely new subdirectory named "Music" inside the "public" folder you just created. The 'public' folder has all permissions for all the users, so the sudo word isn't necessary anymore. This folder is owned by 'user' and group 'pi,' and no one else has to write access to this folder.
You can use the same 'chown' command to make the Music folder owned by everyone and grant write access. Everyone acknowledges the file/directory because nobody and no group are users.
Likewise, you can reorganize your multimedia files in any way you see fit by creating new folders. For demonstration, we will establish a couple of extra subdirectories.
Add a few extra subdirectories inside the /mnt/NTFS public folder. Then, add some audio and video files to each of these folders.
Now tell miniDLNA where to find the media files. Modify the configuration file in your preferred text editor.
Make a list of all additional folders you've made to contain multimedia files in the line where you see 'media dir.' Just after the equal sign is a letter, ',' include the location of the files.
A: Audio
P: Picture
V: Video
PV: Pictures and Videos
Navigate a little farther down the page to specify where the DB and logs will get saved. Quit the editor and save the modifications you've just made.
Restart your minidlna server for the modifications to be reflected in the database and take effect. If everything is okay, the program should be functioning. Please check the status of the server.
Analyze the logs to confirm that everything is functioning as intended.
Just keep an eye out for warning logs. There are claims it can manage up to 8192 folders and subfolders. If you have a more extensive selection, you can change the value of your collection to make it more valuable.
/proc/sys/fs/inotify/max_user_watches. But, this will not survive a reboot.To keep the value set indefinitely. Modify the document /etc/sysctl.conf.
At the very end, add the following sentence:
This can be accomplished in a variety of ways. Here's an easy one:
It's done. However, keep in mind that indexing and cataloging massive data will take longer. The cataloging process might take a little longer at times.
Use Plex to set up a media server for your home.Choose Plex Media Server from the menu button of the official website, then Linux from the left-hand platform drop-down, and select the Choose Distribution button there.
If you're looking for an ARMv7-based distribution, choose Ubuntu (16.04+) or Debian (8+), then save the image. Then follow the steps below to install.
Installing WinSCP is as simple as going to the official website and downloading the software. Run the program you downloaded and installed after it has finished downloading and installation.
Once you've logged in, you should see the local Computer system files on your left side and the Raspberry Pi system files on the other side.
Locate the Plex Storage Server you already downloaded, right-click on it, and select Upload. On the raspberry home directory, the file will be stored there.
Using a secure shell, you may download plex with the wget command from your Raspberry Pi. Direct access to the application file is required to download the entire package. Copy the link address of the application by right-clicking on it and selecting "Copy Link Address."
To download a specific package, run wget accompanied by the URL link and press return on your pi terminal.
The package is saved to the current working directory after downloading.
Connect to the Pi through a secure shell using PuTTY. You should be in the root directory. The program 'ls' output will reveal the file that was previously.
We'll now use the dpkg tool to complete the installation.
IMPORTANT: The filename must match exactly what appears in the secure shell terminal. The reference name of the command is just for illustrative purposes.
Press the return key then you'll be prompted for additional verification. Please accept them, and it'll be deployed as intended. Once the server has been set up, it may be found at:
Whenever you launch the service for the first time, it will prompt you to check in to the Plex account. Once you've entered your username and password, the page should reroute to the local server.
The OS makes it more difficult to mount a hard drive in headless mode. Using this method, you should be able to get everything you need to get this working.
Use the following command to make a new directory in the media directory:
To make a copy of your system's /etc/fstab, type the command:
To identify the external HDD, type the command:
The name may differ if you're looking for the sda2 (/dev/sda2).
Type the command below to obtain the partition Block ID:
There is a LABEL to identify this drive and its type as NTFS, which you can see by looking at the printout. You may also get it as ext4, depending on the format.
The following command is used to modify the /etc/fstab file:
Insert this line in the file:
This UUID is the one that we acquired when we checked the id of the block in the steps above. Ntfs or ext4 should be the file system on the attached drive.
Hit Ctrl + O to save the file, followed by Ctrl + X to quit; the file is saved.
Reboot the Pi while the HDD is still plugged, and then run the df program once more to make everything work as it should. A working /media/HDD mount is still required.
If something goes wrong during this stage, getting the server up and running again will be more challenging.
The Plex app can is found on the Internet by browsing the following address:
Then, click the settings button displayed below.
Navigate to MANAGE > LIBRARIES from the left menu. Libraries are now clearly visible. Select "Add Library" from the drop-down menu. You should now be able to select a media type from a new popup:
Click Next, then Browse for a Multimedia Folder to select the files you want to use. The hard drive will be as seen in the image below. To upload media, click Add and then choose the media directory from which you want to add it.
At this point, the service should begin searching for your files. Depending on the content and the volume of data in the folder, this could take a while to accomplish.
The server-side plex setup is now complete and operational. You can now choose from a variety of ways to consume your media.
You'll be able to watch movies, web series, and live TV through the client application and your local media files.
This tutorial taught us to set up a free media server on Raspberry Pi. It is now possible to stream and organize your media files attractive and portable manner. In the following tutorial, we will learn how to use a raspberry pi as a DNS server.
Welcome to the next tutorial of our Raspberry Pi programming course. Our previous tutorial taught us to how to print from a Raspberry pi. We also discussed some libraries to create a print server in our raspberry pi. We will learn how to take screenshots on Raspberry Pi using a few different methods in this lesson. We will also look at how to take snapshots on our Raspberry Pi using SSH remotely.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Breadboard | Amazon | Buy Now | |
2 | Jumper Wires | Amazon | Buy Now | |
3 | PIR Sensor | Amazon | Buy Now | |
4 | Raspberry Pi 4 | Amazon | Buy Now |
This article will assist you when working with projects that require snapshots for documenting your work, sharing, or generating tutorials.
Screenshots are said to be the essential items on the internet today. And if you have seen these screenshots in tutorial videos or even used them in regular communication, you're already aware of how effective screenshots can be. They are quickly becoming a key internet currency for more efficient communication. Knowing how and when to utilize the correct ones will help you stand out from the crowd.
In this case, we'll employ Scrot, a software program, to help with the PrintScreen procedure. This fantastic software program allows you to take screenshots using commands, shortcut keys, and enabled shortcuts.
Scrot is already installed by default in the latest release of the Raspbian Operating system. In case you already have Scrot, you may skip this installation process. If you're not sure whether it's already installed, use the command below inside a pi Terminal window.
If your Pi returns a "command not found" error, you must install it. Use the following command line to accomplish this:
After installing it, you may test its functionality by using the scrot instruction again. If no errors occur, you are set to go on.
Capturing a snapshot on a Raspberry Pi isn't difficult, especially if Scrot is installed. Here are a handful of options for completing the work.
If you have the Scrot installed on your Pi successfully, your default hotkey for taking screenshots will be the Print Screen key.
You can try this quickly by pressing the Print Screen button and checking the /home/pi directory. If you find the screenshots taken, your keyboard hotkey (keyboard shortcut) is working correctly.
In addition, screenshots and print screen pictures will be stored with the suffix _scrot attached to the end of their filename. For instance,
This is easy as pie! Execute the following command on your Pi to snap a screenshot:
That is all. It is that easy.
The following approach will not work unless you have the navigation closed and have to snap a screenshot without the menu. To get a perfect snapshot with no menu, you must wait a few seconds after taking the picture. You may then close your menu and allow the Scrot to initiate the image capture.
To capture in this manner, send the following command to postpone the operation for five seconds.
Other Scrot settings are as follows:
You might need to give the images a unique name and directory on occasion. Add the correct root directory, followed by the individual title and filename extension, exactly after scrot.
For instance, if you prefer to assign the title raspberryexpert to it and store it in the downloads directory, do the following command:
Remember that the extension should always follow the file name .png.
If the capture command isn't already mapped as a hotkey, you'll have to map it by altering your Pi's config file, and it'll come in handy.
It would be best if you defined a hotkey inside the lxde-pi-rc.xml script to use it. To proceed, use this syntax to open the script.
We'll briefly demonstrate how to add the snapshot hotkey to the XML script. It would be best to locate the <keyboard> section and put the following lines directly below it.
We will map the scrot function to the snapshot hotkeys on the keyboard by typing the above lines.
Save the script by hitting CTRL X, Yes, and afterward ENTER key when you've successfully added those lines.
Enter the command below to identify the new changes made.
You may discover that taking snapshots on the raspberry is impractical in some situations. You'll need to use SSH to take the image here.
When dealing with Ssh, you must first activate it, as is customary. You may get more information about this in our previous tutorials.
Log in with the command below after you have enabled SSH:
Now use the command below to snap an image.
If you've previously installed the Scrot, skip line 2.
Using the command below, you can snap as many snapshots as you like using varying names and afterward transferring them over to your desktop:
Remember to change the syntax to reflect the correct username and Ip.
you can snap a screenshot and save it immediately to your Linux PC. However, if you regularly have to take snapshots, inputting the passcode each time you access the Rpi via SSH will be a tedious chore. So you can use publicly or privately keys to configure no passcode ssh in raspberry pi.
To proceed, use the following command to install maim on raspberry pi.
Return to your computer and use the command below to take a snapshot.
We're utilizing the maim instead of other approaches since it's a more elegant method. It sends the image to stdout, allowing us to save it to our laptop via a simple URL redirect.
Raspi2png is a screenshot software that you may use to take a screenshot. Use the code below for downloading and installing the scripts.
After that, please place it in the /usr/local/bin directory.
Enter the following command to capture a screenshot.
Ensure to use your actual folder name rather than <directory_name> used.
Because we are using a GUI, this solution is relatively simple and easy to implement.
First, use the following command to download the GNOME Snapshot tool.
After it has been installed, go to the Raspberry navbar, select the menu, select Accessories, and finally, Screenshot.
This opens the GNOME Picture window, where you can find three different taking options, as seen below.
Choose the appropriate capture method and select Capture Image. If you pick the third choice, you will have to use a mouse to choose the location you wish to snip. If you use this option, you will not need a picture editor to resize the snapshot image. The first choice will record the entire screen, while the second will snip the active window.
GNOME gives you two alternatives once you capture a screen. The first is to save the snapshot, and the other is to copy it to the clipboard. So select it based on your requirements.
It all begins with a simple screenshot. You don't need any additional programs or software to capture a basic screenshot. At this moment, this feature is built into almost all Raspberry Pi versions and Windows, Mac PCs, and cellphones.
It is the process of capturing all or a part of the active screen and converting it to a picture or video.
While it may appear the same thing as a screenshot and a screen capture, they are not the same. A screenshot is simply a static picture. A desktop window capture is a process of collecting something on the screen, such as photographs or films.
Assume you wish to save a whole spreadsheet. It's becoming a little more complicated now.
Generally, you would be able to record whatever is on your window. Still, in case you need to snip anything beyond that, such as broad, horizontal spreadsheets or indefinitely lengthy website pages, you'll need to get a screen capture application designed for that purpose. Snagit includes Scrolling snapshot and Panorama Capture capabilities to snap all of the material you need in a single picture rather than stitching together many images.
This is a GIF file containing a moving image. An animated succession of picture frames is exhibited.
While gif Images aren't limited to screen material, they may be a proper (and underappreciated) method to express what's on your display.
Instead of capturing multiple pictures to demonstrate a process to a person, you may create a single animated Version of what is going on on your computer. These animations have small file sizes, and they play automatically, making them quick and simple to publish on websites and in documents.
This is making a video out of screen material to educate a program or sell a product by displaying functionality.
If you want to go further than a simple snapshot or even gif Animation, they are a good option. If you have ever looked for help with a software program, you have come across a screencast.
They display your screen and generally contain some commentary to make you understand what you are viewing.
Screencasts can range from polished movies used among professional educators to fast recordings showing a coworker how to file a ticket to Information technology. The concept is all the same.
Using screenshots to communicate removes the guesswork from graphical presentations and saves time.
The snapshot tool is ideal for capturing screenshots of graphical designs, new websites, or social media posts pending approval.
This is a must-have tool for anybody working in Information Technology, human resource, or supervisors training new workers. Choose screenshots over lengthy emails, or print screen pictures with instructions. A snapshot may save you a lot of time and improve team communication.
Furthermore, by preserving the snapshot in Screencast-O-Matic, your staff will be able to retrieve your directions at any time via a shareable link.
To avoid confusion, utilize screen captures to show. IT supervisors, for instance, can utilize images to teach their colleagues where to obtain computer upgrades. Take a snapshot of the system icon on your desktop, then use the Screen capture Editor to convert your screen capture into a graphical how-to instruction.
Any image editing tool may be used to improve pictures. You may use the highlighting tool to draw attention to the location of the icons.
Everybody has encountered computer difficulties. However, if you can't articulate exactly what has happened, diagnosing the problem afterward will be challenging. It's simple to capture a snapshot of the issue.
This is useful when talking with customer service representatives. Rather than discussing the issue, email them an image to help them see it. Publish your image immediately to Screencast and obtain a URL to share it. Sharing photos might help you get help quickly.
It can also help customer support personnel and their interactions with users. They may assist consumers more quickly by sending screenshots or photographs to assist them in resolving difficulties.
Snapshots are a simple method for social media administrators to categorize, emphasize, or record a specific moment. Pictures are an easy method to keep track of shifting stats or troublesome followers. It might be challenging to track down subscribers who breach social network regulations. Comments and users are frequently lost in ever-expanding discussions.
Take a snapshot of the problem to document it. Save this image as a file or store it in the screenshots folder of Screencast. Even if people remove their remarks, you will have proof of inappropriate activity.
This tutorial taught us how to take screenshots from a Raspberry Pi using different methods. We also went through how to remotely take snapshots on our Pi using SSH and discussed some of the benefits of using the screenshot tool. However, In the following tutorial, we will learn how to use a raspberry pi as a webserver.
Welcome to the next tutorial of our Raspberry Pi programming course. Our previous tutorial taught us to how to tweet from Raspberry pi. We also discussed some methods used by the tweepy library to perform some API calls in our project. We will learn how to print from a Raspberry pi in this lesson.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
There are several benefits of having a print server. Print servers may link numerous computers to one or multiple printers, either physically or wirelessly, allowing you to access the printer with various devices and send print instructions from all the other connected computers.
It is not easy to print from an Android smartphone to a cabled printer; however, a printer server makes it simple. A print server is useful in small workplaces where employees may print from any business printer. Another benefit is that we do not need to install drivers and software for the printer on your devices.
The Common Unix Printing System is a printing tool for machines running UNIX-like operating systems. It enables the machine installed to function as a printer server. A CUPS-enabled computer may take tasks from numerous devices, process them, and send them to the right printer for printing.
With our Raspberry terminal, we will configure the typical Unix printing system.
We need to ensure that our Pi runs the most recent software; thus, we will carry out the following command in the terminal.
Once the installation is finished, we will restart our raspberry pi.
A few system changes are required before utilizing the Pi as a "server" on the network. We must configure the dynamic host configuration protocol client to use a static Ip; otherwise, the DHCP client may choose any accessible network address, making it difficult to access the RPi over the network.
We begin by modifying the DHCP configuration file.
If you choose to create a static Ip for the wired connection or a Wi-Fi connection, add either one of the below.
Save your file by pressing Ctrl Plus X, then Yes, finally Enter key. Lastly, restart your Raspberry Pi.
Note that your network setup may differ in address category and Ip. This step must be done carefully; otherwise, your Pi will experience connection troubles. Run the following commands and look at the inet and subnet mask numbers to know what IP address you'll need:
The next step is to set up CUPS. This will take some time, but it will install with other requirements such as Samba, Perl, and several other tools or packages.
We have to make adjustments to CUPs' config file. The following commands can be used to edit the configuration file:
To the config file, add the following. We will be able to communicate with CUPS panels due to these modifications.
If you wish to change the Ip port, locate and modify this line.
In addition, if we want to use the CUPS Interface, you must accept requests coming from that domain. Just before <location> tags, we add these lines.
Save your file by pressing Ctrl + X, then Yes, accompanied by the Enter key.
The Raspberry user is then added to the lpadmin group. This allows the RPi to conduct CUPS administration duties without being a superuser.
We must guarantee that CUPS is available throughout the network.
Lastly, reboot CUPS to apply the modifications.
Samba is an industry-standard Microsoft interoperable package for Unix systems. It allows our Windows operating system to connect to our CUPS central server on the Raspberry Pi and transmit print instructions from the Windows system.
We have to change Samba's settings in the config file before we can proceed with the setup:
Scroll down to the print area and alter the guest's ok to yes.
Scroll down to the printer driver area and change the line shown below
Save the script by pressing Ctrl Plus X, then Yes, accompanied by the Enter key.
Lastly, reboot Samba to see the modifications take effect:
You may need to install printer drivers. You can look for the instructions for your specific printer brand on the internet, but we'll be using an HP printer for this lesson.
Install the following GUI if desired:
Then run the command below and download the displayed package from HP.
Link your computer to the network your Raspberry is in. Open the internet browser and navigate to the CUPS site by providing your Pi IP followed by port ":631," to which CUPS is connecting. If the internet browser displays the message "Connection not secure," select "Proceed Anyway."
You may find your Pi IP by running hostname -I on your Pi terminal. If all goes well, the website is:
Navigate to the Admin page and choose Add Printer. Ascertain that you turn the printer on and hook it to the Raspberry through USB. Follow the on-screen instructions to set up the printer. Check the "share this printer" checkbox before proceeding to the last stage. Lastly, print a sample page on the Printers tab to ensure that everything is working correctly.
Please remember that the printer might not be shown under "Local Printers." If this is the situation, you must configure the necessary printer drivers in your Raspberry Pi.
The last step is to transmit print instructions using any connected devices. After that, you can print wirelessly from Linux, Microsoft, Macintosh, Android, and apple. There is no need to install additional printer drivers for this.
This is the final and most straightforward step, in which we will wirelessly communicate print instructions to our printer. You must have CUPS installed on your Raspberry and print a sample page using the CUPS Web-based interface. Any gadget you would like to print from must be on the Pi network.
You must have Samba installed and set up on your Pi for this to function.
Navigate to Settings and select "Add a printer or scanner." This will automatically detect the network printer, and you may add it by clicking "Add Device."
Select "The printer that I want isn't displayed if it doesn't work."
The queue name, in this case, is like the printer's queue name in the Printers tab of the CUPS web-based interface.
You may add a wireless printer to a Linux desktop by going to GNOME Preferences- Devices and Printers. The procedure would be relatively similar in other Linux distributions.
The wireless printer will be discovered and added automatically. If that doesn't work, you might need to add the printers by entering the Ip of the Raspberry Pi.
At the bottom, press the Plus button. The printer will be detected automatically by Mac. Select and then click Add.
The system includes a Print Function in Android. For previous versions, you must install the CUPS Print plugin. Then go to Settings -Devices Connected -Connectivity- Preference Printing and activate the CUPS Printing plugin. You may start the Print Capability in Oreo and later versions.
For printing a paper or file, open the files in a printing-compatible app. Go to Options Print, choose your printer, and press the print button.
There was an issue that occurred after installing a printer. The printer only printed a few jobs and ignored the rest. I had to reboot either the Raspberry Pi or the printers to resume printing. The command below resolved this issue:
If you haven't yet experienced the pleasures of wireless connection printing, this project is a great place to start. But what's the point of wireless printing?
Wireless connected printers enable users to work effectively on the go because there are no cables attaching the printer to a particular spot. This may be useful in various industries, from retail, where sales associates can construct more checkout stations during busy periods, to logistics, where haulage carriers must track the weights of their vehicles.
Organizations with mobile workers, such as health & security inspectors, may profit from wireless communication because employees can print their invoices, records, and results right away – instead of having to go back to their offices.
Instead of struggling to access your business services to download discs, these wireless printers work efficiently. The benefits of a wireless connection are limitless. It allows business employees to produce receipts, examination data, tickets, and labels with a single click and return to their job with minimal interruption.
Wireless printing can also eliminate the requirement for Wi-Fi using iOS and Android technologies, allowing mobile employees, public transportation drivers, and law enforcement officers to print files regardless of their place.
Wi-Fi printers use infrared technologies to connect to other devices and quickly produce high-quality banners, receipts, and bar codes. The printer may increase doctor efficiency while drafting patient information if it is equipped with pre-cut labels and provide major benefits to CSI teams, who can now immediately manufacture evidence tags at crime scenes.
Depending on your company's needs, a single printer can serve various functions. While a shop manager may utilize a mini-printer for everyday receipt production, they could also opt to use the same printers to print tickets for exclusive launch events, therefore, lowering equipment expenses.
Because the printer is small and portable, employees may set it wherever needed. The printers provide excellent space-saving solutions for better printing efficiency and the ability for many users to connect to a single printer to cut the cost of buying extra resources.
These printers are intended to reduce waste, which is very important for conferences and seminars. Workers may print on demand since the printer does not have to be supplied with pre-printed tickets, avoiding the possibility of an unneeded surplus.
Wi-Fi printers are advantageous to small stores, like start-ups or pop-ups, since they are not well-established companies.
With a bit of investment in such a payment service and a portable printer, business owners may accept card payments at gatherings or establish temporary kiosks in existing businesses and cafés.
Despite their small size, Wi-Fi printers have a considerably longer battery storage life that may last weeks or even months on standby. This implies you won't have to pay a high electricity cost, and you won't have to resupply every day.
Wi-Fi printing makes printing more flexible, making it an excellent project for Raspberry Pis. The advantage of this approach is that it is compatible with Microsoft operating system, Macintosh, and other Linux distribution systems.
Decades ago, some individuals stopped sending these cards and letters. But there's nothing quite like receiving a handmade letter from someone. Your printer offers multiple options for printing in various sizes.
You could even use an inkjet printer to print creative design work if you're a creative individual. Because inkjet ink offers a much more accurate and vibrant color representation than laser ink, we recommend utilizing them instead of laser printers.
There is no better method to share professional details with customers than offering them a professional card nowadays. Ordering these cards, on the other hand, is shockingly costly.
Are you preparing a great social event or party? Prepare your paper napkins by printing something unique on them. That's right: you can personalize your napkins with photos, graphics, initials, logos, and other details.
With this capability, you can elevate that special event or family dinner to a whole new level. Furthermore, if you own a modest business that offers personalized napkins, it is really a fantastic option to work from home.
In this tutorial, we learned how to print from Raspberry pi. We also learned some of the benefits of using a wireless printer. However, In the following tutorial, we will learn how to take a screenshot in our Raspberry pi.