Hello readers! I hope you are doing great. Today, we are discussing the latest library for proteus. In the tutorial, we will look at the Arduino Mega 2560 library for Porteus V 3.0, which is one of the most versatile and useful microcontrollers from the Arduino family. We have shared the previous versions with you before this; these were the Arduino Mega 2560 library for Proteus and the Arduino Mega 2560 library for Proteus V2.0. The current version is better in structure and does not have a link to the website so you may use it in your projects easily.
Here, I will discuss the detailed specifications of this microcontroller. After that, I will show you the procedure to download and install this library in the Proteus and in the end, we’ll create a mini project using this microcontroller. Here is the introduction to the Arduino Mega 2560:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Buzzer | Amazon | Buy Now | |
2 | Arduino Mega 2560 | Amazon | Buy Now |
The Arduino Mega 2560 belongs to the family of Arduino microcontrollers and is one of the most important devices in embedded systems. Here are some of its specifications:
Specification |
Value |
Microcontroller |
ATmega2560 |
Operating Voltage |
5V |
Input Voltage (recommended) |
7-12V |
Input Voltage (limit) |
6-20V |
Digital I/O Pins |
54 (of which 15 provide PWM output) |
Analog Input Pins |
16 |
DC Current per I/O Pin |
20 mA |
DC Current for 3.3V Pin |
50 mA |
Flash Memory |
256 KB (8 KB used by bootloader) |
SRAM |
8 KB |
EEPROM |
4 KB |
Clock Speed |
16 MHz |
LED_BUILTIN |
Pin 13 |
Length |
101.52 mm |
Width |
53.3 mm |
Weight |
37 g |
Now that we know the basic features of this device, we can understand how it works in Proteus.
This library is not present by default in Porteus. The users have to download and install it in the Porteus library folder. Click on the following link to start the downloading process:
Arduino Mega 2560 V3.0 for Proteus
If the downloading process is complete, you can see a zip file in the downloading folder of your system. Click on it.
Extract the zip folder at the desired location.
Along with some other files, you can see there are two files with the following names in the zip folder:
ArduinoMega3TEP.IDX
ArduinoMega3TEP.LIB
You have to copy these two files only and go to the folder of the given path:
C>Program files>Lab centre electronics>Proteus 7 Professional>Library
If you want more details on this process, you must see How to Add a New Library File in Proteus .
Note: The procedure to install the same package in Proteus Professional 8 is the same.
Now, the Arduino Mega 2560 V3.0 can be run on your Proteus software. Open your Proteus software or if it was already opened, restart it so the libraries may load successfully.
Click on the “P” button on the left side of the screen and it will open a search box for devices in front of you.
Here, type “Arduino Mega 2560 V3.0,” and it will show you the following device:
Double-click on it to pick it up.
Close the search box and click on the name of this microcontroller from the pick library section present on the left side.
Place it in the working area to see the structure of the Arduino Mega 2560 V3.0.
If you have seen the previous versions of this microcontroller in Proteus, you can see that the latest version has some changes in it. The design and colour are closer to the real Arduino Mega 2560. Moreover, it does not have a link to the website and the pins are more realistic.
The workings of the Arduino Mega 2560 V3.0 library can be understood with the help of a simple project. Let’s create one. For this, follow the steps given here:
Now, connect all the components through the connecting wires. Here is the final circuit:
Now, it's time to add code to the simulation.
const int buttonPin = 2; // Pin connected to the button
const int speakerPin = 3; // Pin connected to the speaker
int buttonState = 0; // Variable to store the button state
boolean isPlaying = false; // Variable to track whether the speaker is playing
void setup() {
pinMode(buttonPin, INPUT);
pinMode(speakerPin, OUTPUT);
}
void loop() {
// Read the state of the button
buttonState = digitalRead(buttonPin);
// Check if the button is pressed
if (buttonState == HIGH) {
// Toggle the playing state
isPlaying = !isPlaying;
// If playing, start the speaker
if (isPlaying) {
digitalWrite(speakerPin, HIGH);
} else {
// If not playing, stop the speaker
digitalWrite(speakerPin, LOW);
}
// Add a small delay to debounce the button
delay(200);
}
}
You can get the same code from the zip file you have downloaded from this tutorial.
Click on the "verify" button present on the above side of the code.
Once the loading is complete, click on the “upload” button present just at the side of the verify button. It will create a hex file in your system.
From the console of loading, search for the address of the file where the code is saved.
In my case, it looks like this:
Copy this path to the clipboard.
Once again, go to your Proteus software.
Click on the Arduino Mega 2560 to open its control panel.
Paste the path of the hex file in the place of the program file:
Hit the “OK” button to close the window.
Once you have loaded the code into the microcontroller, you can now run the project.
At the bottom left side of the project, you can see different buttons, click on the play button to run the project.
Before clicking on the button of the project, the project looks like the following:
Once the button is pressed, you will hear the sound from the speaker. Hence, the speaker works with the button.
If all the above steps are completed successfully, you will hear the sound of the speaker. I hope all the steps are covered in the tutorial and you have installed and run the Arduino Mega 2560 v3.0 in Proteus, but if you want to know more about this microcontroller, you can ask in the comment section.
Hello friends! I hope you are doing great. Today, we are discussing the latest version of the Arduino Mega 1280 library for Proteus. This can be used in both versions (Proteus 7 and Proteus. We have shared the previous versions, which are the Arduino Mega 1280 library for Proteus and the Arduino Mega 1280 library for Proteus V2.0 with you. With the advancement in the version, these microcontrollers have a better structure and the design is closer to the real microcontrollers.
In this article, I will discuss the introduction of the Arduino Mega 1280 in detail. Here, you will learn the features and functions of this microcontroller. Then, we’ll see how to download and install this library in Proteus. In the end, we’ll see a mini project using the Arduino Mega 1280 V3.0. Let’s move towards our first topic:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | LCD 20x4 | Amazon | Buy Now |
Now, let’s see the Arduino Mega 1280 library V3.0 in Porteus.
The download and installation process for Arduino Mega 1280 is easy. The Proteus software does not have this library by default. To use it, the first step is to download it from the link given below:
Arduino Mega 1280 V3.0 for Proteus
The downloading does not take much time. Once it is complete, it can be seen in the download folder on your system.
You will see a zip file when it is extracted to a particular path of your choice.
There are two files in the folder named:
ArduinoMega3TEP.IDX
ArduinoMega3TEP.LIB
Copy these files and paste them into the folder with the following path:
C>Program files>Lab centre electronics>Proteus 7 Professional>Library
If you want more details on this process, you must see How to Add a New Library File in Proteus .
Note: The same process is applicable to Proteus 8 professional if you are using that.
You can see it has many pins and the structure and design are closer to the real Arduino Mega. There is no link to the website on this microcontroller and it has more details about the pins on it. These points are different from the previous versions.
The Arduino Mega 1280 has many features and it is used in a great number of projects. But, as a beginner, we’ll check the work with the help of a simple project. In this project, we’ll use the LED with Arduino Mega 1280 V3.0 and print the message of our own choice. Follow the steps to perform this example:
Go to the terminal mode from the left side of the screen, and then choose the default pins for the clean circuit.
Set and label the pins according to the image given here:
The circuit is fine but it can’t be run without coding.
Fire up your Arduino IDE.
Create a new sketch for this project.
The upper side has a drop-down menu, choose Arduino from there.
Delete the default code.
Paste the following code into it:
#include
//Setting the LCD pins
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
const int buttonPin = 0;
boolean lastButtonState = LOW;
boolean displayMessage = false;
void setup() {
pinMode(buttonPin, INPUT);
//Printing the first message
lcd.begin(20, 4);
lcd.setCursor(1, 0);
lcd.print("Press the button to see the message");
}
void loop() {
int buttonState = digitalRead(buttonPin);
// Using if loop to create the condition
if (buttonState != lastButtonState) {
lastButtonState = buttonState;
if (buttonState == LOW) {
displayMessage = true;
lcd.clear();
lcd.setCursor(1, 0);
//Printing the message on screen when buttin is pressed
lcd.print("www.TheEngineering");
lcd.setCursor(4, 1);
lcd.print("Projects.com");
} else {
displayMessage = false;
lcd.clear();
lcd.setCursor(1, 0);
lcd.print("Press the button to see the message");
}
}
}
The same code is also present in the zip file of the Arduino Mega 1280 V3.0 library folder you have downloaded.
Click on the tick mark to run the code. It will take some moments to be loaded.
Once the loading is complete, click on the upload button to get the hex file address.
In the loading process, you have to search for the path to the hex file. In my case, it looks like the following image:
Go to the proteus where we have created our project.
Double-click on the Arduino Mega 1280 V3.0 module. It will open its properties panel in front of you.
Paste the address of the hex file into the section named “Program File.".
Hit the “OK” button and close the window.
There are some buttons at the bottom left corner of the screen. Out of these, you have to click the play button to run the project.
If all the above procedures are completed successfully, you will see the output on the screen.
When the button is opened, the LCD shows the message that you have to push the button to see the message.
Click on the button, and now you can see the message on the LCD.
If all the above steps are completed successfully, you will see that you have used the Arduino Mega 1280 V3.0 to show the required message on the LCD. This microcontroller can be used in different complex projects and can provide the basic working according to the code. Now, you can try different projects on your Proteus. I hope you have installed the microcontroller successfully. Yet, if you are stuck at any point, you can ask in the comment section.
Hello friends! I hope you are doing great. Today, we are presenting another version of the Arduino Pro mini library. We have seen the Arduino Pro Mini library for Proteus and the Arduino Pro Mini library for Proteus V2.0 with you. As expected, the Arduino Mini Library for Proteus V3.0 has a better structure and size that make it even better than the previous ones. We will go through the details of the features to understand the library.
In this article, I will briefly discuss the introduction of Arduino Pro Mini V3.0. You will learn the features of this board and see how to download and install this library in Proteus. In the end, I will create and elaborate on a simple project with this library to make things clear. Let’s move towards our first topic:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Arduino Pro Mini | Amazon | Buy Now |
In the vast range of microcontrollers, the Arduino Pro mini stands as the most powerful and compact member of the Arduino family. With the advancement in the version, the better functionalities and easy working of this microcontroller have been seen. Here are some important features of this microcontroller:
Now, let’s see the Arduino Pro Mini library V3.0 in Porteus.
By default, the Proteus does not have any Arduino Pro mini library. This can be used in Proteus by installing it manually. For this, download the library through the link given next:
Arduino Pro Mini Library for Proteus V3.0
Once the downloading process is complete, you can see a zip folder with the same name in your download folder. Double-click on it or extract the file to the current folder with any other method. Remember the path to this extracted file.
Now, go to the required path and open the folder named “Proteus Library Files.”.
Here, you will find the following files:
ArduinoProMini3TEP.IDX
ArduinoProMini3TEP.LIB
These folders have to be placed in the library folder of Proteus so that we can have them in Proteus.
For this, follow the path C>Program files>Lab centre electronics>Proteus 7 Professional>Library. Simply paste both of these into the folders of other libraries.
If you want the details of this process, you must see How to Add a New Library File in Proteus .
Note: The procedure to add the same library to Proteus 8 is the same.
If you have followed the above procedure successfully, the Arduino Pro mini V3.0 will work in your Proteus. If the software was already open, restart it. Otherwise, open your Proteus software.
Click on the P button on the left side of the screen. This will prompt you to enter the search box.
Here, search for “Arduino Pro Mini V.30,” and if you have installed it successfully, you will see it in the options:
Click on the name “Arduino Pro Mini V3.0.”. It will be shown in the Pick Library of your Porteus.
Click on the name of this microcontroller and double-click on the working area to fix it there.
Look at the structure and pinouts of this Arduino board.
You can see this version has a better structure of pins and is similar to the real Arduino Pro Mini. We have removed the link to the website from this library and created an even smaller Arduino Pro Mini so the users can have a better experience with it.
It’s time to test the workings of this microcontroller in Porteus.
This will not work until we program the Arduino pro Mini in Arduino IDE.
int LED = 2; // the PWM pin the LED is attached to
int brightness = 2; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
void setup() {
// declaring pin 9 to be an output:
pinMode(LED, OUTPUT);
}
void loop() {
// setting the brightness of pin 9:
analogWrite(led, brightness);
// changing the brightness for next time through the loop:
brightness = brightness + fadeAmount;
// reversing the direction of the fading at the ends of the fade:
if (brightness <= 0 || brightness >= 255) {
fadeAmount = -fadeAmount;
}
// waiting for 30 milliseconds to see the dimming effect
delay(50);
}
}
You can have the same code in the zip file you downloaded before through this article. Click on the tick mark at the above side of the screen.
Wait for the loading to complete.
Click on the “Upload” button next to the tick mark. The loading will start at the bottom and you will see the hex file in the console.
Search for the whole address of the hex file to copy it.
Now, the project is ready to be played. Hit the play button to start the simulation.
If all the components are set up well and the project does not have any errors, the simulation will be started.
If all the steps are accomplished completely, your project will run successfully. I hope you have installed and worked with the Arduino Pro mini V3.0 without any errors and you can now create complex projects with this. Still, if you are stuck at any point, you can ask in the comment section.