How to Mine Cryptocurrency with Raspberry Pi 4?

Welcome to today's article on our comprehensive Raspberry Pi 4 programming guide. As we saw in the previous article, the Raspberry Pi 4 may power a single seven-segment display. In addition, we also interfaced a Raspberry Pi with 4 Seven-Segment Display Modules to display the time. However, this guide will show you how to construct a Raspberry Pi 4 crypto miner that uses very little electricity.

Cryptocurrencies have been the subject of widespread conversation for some time now. It's possible to use your computer to create them, and they can be used as currency. Because of this, the Raspberry Pi can also be used for Bitcoin mining. It's also possible to mine other cryptocurrencies. One drawback of mining is that the cost of electricity often exceeds the revenue it brings in. So, let's check out how to construct a solar-powered, money-making cryptocurrency miner with a Raspberry Pi.

Where To Buy?
No.ComponentsDistributorLink To Buy
1Raspberry Pi 4AmazonBuy Now

Components

  • A pool account

  • Bitcoin Wallet

  • Raspberry Pi

  • Raspbian image SD card

  • USB Bitcoin miner

Mining for cryptocurrency: what exactly is that?

Crypto mining, the digital equivalent of the gold mining industry, involves a combination of complex mathematical calculations and blind luck. Mining is crucial for cryptocurrencies as it is the only way to update the distributed ledger (Blockchain).

Despite Bitcoin's popularity, there are other digital currencies available. All cryptocurrencies use blockchains to ensure that all transactions are legitimate and that users cannot spend the same cryptocurrency more than once.

Blockchain

To simplify things for the unfamiliar in the web3 environment, let's say that a blockchain is a distributed ledger that maintains track of all transactions made over it. Similar to how a bank keeps a record of who gave money to whom, how much was sent, and when it was sent, blockchain stores this unchangeable data within distributed blocks linked together via a network.

Users, known as miners or validator nodes, provide the network's computational power to verify all of the blockchain's transactions. This blog post will not delve further into smart contracts, which are computer programs that can be set up to run automatically on a blockchain if and only if specific criteria are met.

Bitcoin and Ethereum miners are sometimes pictured as a large server farm full of powerful graphics processing unit (GPU) or application-specific integrated circuit (ASIC) devices that work tirelessly to solve complex cryptographic puzzles issued by the blockchain in exchange for financial rewards. The consensus technique for validating submissions and awarding incentives varies from blockchain to blockchain.

Which Cryptocurrency is Ideal for Raspberry Pi Mining?

Raspberry Pi users can choose from several different coins to mine, but not all are profitable. The most profitable option is the one you should choose. The USB miner is crucial to mining since it dramatically boosts productivity. In mining, you have two primary options:

For anyone interested in beginning mining using a USB miner like NEWPAC, selecting a cryptocurrency that uses the SHA-256 algorithm is a must. Bitcoin (BTC), Bitcoin Cash (BCH), Bitcoin SV (BSV), and many others are just some of the cryptocurrencies that use the SHA-256 algorithm. However, Bitcoin is the most lucrative and should be explored first if you plan to mine using a Raspberry Pi.

The Raspberry Pi's central processing unit (CPU) can be used to begin mining in the absence of a dedicated USB miner. In such a scenario, you should go with Monero (XMR), the coin that can be mined with the least effort using a Raspberry Pi.

Can you make money mining Bitcoin in 2020 with a Raspberry Pi 4?

After calculating electricity and equipment costs, I found that bitcoin mining with a regular computer could have been more worthwhile. Most bitcoins are now mined using specialized computers called ASIC bitcoin miners; nevertheless, amateurs and enthusiasts still have some success mining by joining a mining pool. What if we set up a mining rig powered by a Raspberry Pi and solar panels and "deducted" the cost of the equipment? As the number of miners for Bitcoins increases, the difficulty of mining rises, and the rewards for miners decrease, the industry has become very competitive. Despite this discouraging information, I've decided to move on with this plan and shift my focus to alternative crypto assets.

Mining Pools

Since we are utilizing a Raspberry Pi rather than an ASIC bitcoin miner, individual crypto mining was not an option. Despite my best efforts, I could not locate any mining pools that supported the Raspberry Pi operating system among the many available for Windows and macOS. Since Linux miners are written for the x86 architecture, Raspberry Pi cannot participate in the mining process. Linux mining software that runs on x86 processors like those found on most personal computers is supported.

Please note that the purpose of this paper is to promote further study of blockchain technology and cryptocurrencies, not to create any of those assets. The techniques outlined here are workarounds that need to be endorsed by the developers. Instead, you can download the free software linked with your preferred mining pool and install it on your personal computer.

How to Use a Raspberry Pi to Mine Cryptocurrency

We'll first sign up for an account on minergate, a crypto mining pool with over 3.5 million users worldwide that supports Bitcoin, Gold, Zcash, Ethereum, Ethereum, and monero. Since Monero is the only crypto I have had success with, this guide will focus solely on that one.

  • Turn on your Raspberry Pi.

  • Press Ctrl-T or launch a Terminal window in Raspberry Pi OS using Desktop. Please use the standard login procedures while using Raspberry Pi Lite.

  • If you're already in the Terminal, you can install the updates and prerequisites immediately.

sudo apt-get update && sudo apt-get upgrade -y

sudo apt install git automake autoconf libcurl4-openssl-dev libjansson-dev libssl-dev libgmp-dev 

cd cpuminer-multi

  • Please use the below three commands to compile the mining code. This process will take a few minutes if you're using a Raspberry Pi 4.

sudo ./autogen.sh

sudo ./configure

sudo ./build.sh

  • Let's begin monero mining once we've installed and set up the mining program on our Raspberry Pi. To activate the miner, run the following line in the Terminal, substituting YOUR EMAIL with the address you used to create your minergate account.

./cpuminer -a cryptonight -o stratum+tcp://xmr.pool.minergate.com:45700 -u YOUR_EMAIL

The mining software will begin running, and if you're lucky, you'll see some 'accepted' shares marked with a "yes."

    Please log in to minegate/internal so we can inspect your Minergate Dashboard. This can be done on a PC or laptop using the Chromium web browser or on a Raspberry Pi using the Raspberry Pi Desktop interface. Find the Monero icon at the bottom of your screen. The ONLINE status will be displayed if Monero is connected and functioning correctly. Congratulations! You have started Monero mining!

    What are Monero's benefits?

    Now that we have a basic understanding of blockchain and cryptocurrencies, the issue of which currency is superior naturally emerges. The original cryptocurrency was Bitcoin, but there are now thousands of others, each with unique characteristics.

    Though Bitcoin transactions may be traced back to specific senders and recipients through their hash values, this is a significant drawback of the cryptocurrency.

    Monero is a cryptocurrency with unique rules in this regard. It's likewise mineable and based on a blockchain, but unlike bitcoin, the transactions here are anonymous and difficult to track. This is why most exchanges will not let you buy or sell Monero and why mining is the best option if you want some.

    Many more cryptocurrencies exist besides Bitcoin and Monero, such as the technically superior coins Ethereum and the humorous currency Dogecoin. The Raspberry Pi can be used to mine a large number of them.

    How to Automatically Start Crypto Mining with Your Raspberry Pi 4

    We'll utilize the Crontab approach to ensure that our cryptocurrency miner is always running on our Raspberry Pi.

    crontab -e

    If you haven't already, you'll see the message "no crontab for pi, Choose an editor" when you try to set the crontab.

    • Select 1 and press Enter.

    • Clicking here will launch a new crontab file; once it has opened, go to the bottom and add the following command, substituting YOUR EMAIL with the email you used to sign up for your Minergate account.

    @reboot sudo /cpuminer-multi/cpuminer -a cryptonight -o stratum+tcp://xmr.pool.minergate.com:45700 -u YOUR_EMAIL

    • To keep your crontab, hit Ctrl-X and then y.

    • Type "sudo reboot" into the Terminal to restart the Pi.

    How much Monero can Pi 4 mine? 

    After being powered on for almost 8 hours, my Raspberry Pi 4 has successfully calculated 357 good shares. Successful miners receive compensation when their shares are valued. If I do the math and get the appropriate answer, but my Pi is slower than another computer, I get a bad share. Only the first miner will be compensated if a miner submits a valid response before anyone else. Every invalid share is a penalty for the miner because of the possibility of fraud. I began to worry when my first four shares were flagged as invalid.

    357 good shares = 0.000001410642 Monero = 0.00015569 USD

    For 8 hours, I earned $0.000100, which is less than a penny. I was required to have at least 0.05 Monero (equivalent to about $5.811 USD) to make a withdrawal. (As of the date this article was published, the exchange rate was.) To attain the minimum withdrawal criterion of 0.05 Monero would take me 3,762 years at a rate of accumulating 0.000001410642 Monero per 8 hours.

    What We've Learned About Mining Cryptocurrency with a Raspberry Pi 4

    As was mentioned at the outset of this piece, the aim of this activity was education regarding bitcoin, not financial gain.

    • Mined cryptocurrency rewards are divided up based on hash rates and shares. My hash rate swung between 1.6 and 33.3 hashes per second. The pool averaged 10.27 MH/s, around 3 million times faster than my Pi. As a point of comparison, 1 MH/s equals 1,000,000 hashes/ sec.

    • Additionally, a tiny commission is added to your transactions by the Minergate. Choose a Pay Per Share structure or one based on chance (with more significant potential gain).

    • Many 'time out' and send line failed' errors appeared on my Pi as I wrote this essay. On occasion, a Pi reboot was required, but on other occasions, the miner resumed operations without any more intervention.

    • Even though my Raspberry Pi wasn't a "money maker" in the cryptocurrency mining game, we still had a great time seeing it effectively compute and accumulate excellent shares.

    How lucrative is Raspberry Pi mining?

    A person can easily mine bitcoins at home with minimal equipment. A powered external USB hub may be the way to go if you want to avoid shelling out the cash for a desktop PC. Bitcoin mining can be facilitated and made more profitable by using a powered external USB hub. Raspberry Pi version B, compatible with most PCs, is also readily available and inexpensive. You can use Bitcoins to buy and sell on websites or keep them safe in a digital wallet

     when you have Bitcoins. 

    Remember that large commercial Bitcoin miners employing thousands of computers will be your main competition. Still, a Pi 4 mining system is a fantastic (and entertaining) method of earning Bitcoins with little work. Because of the high cost of maintaining the hardware, mining Bitcoin using a Pi 4 is not financially sound. For Bitcoin mining, you'll also need hardware that's up to the task.

    To be sure, a Pi 4 mining system can be a fantastic (and entertaining) method of earning Bitcoins without much effort on your part. However, even if you only make a few Satoshi, you'll still gain valuable experience and knowledge, so it's a good use of time. Be mindful of your monthly electricity costs, though.

    Although you might make a few dollars mining on a Raspberry Pi, you won't become filthy rich overnight. Your electric bill may skyrocket if you've amassed a sizable Raspberry Pi fleet for mining. You can generate a small profit with a solar panel designed for the Raspberry Pi. The revenues won't make you rich, though; mining Monero with a Pi 4 and 100H/s of hashing power will net you just $1 per year. Making an annual average of $20 from mining using a USB miner is possible with Bitcoin.

    Conclusion

    We have developed a cryptocurrency miner that generates no additional costs whatsoever. The hash rate is a severe drawback of this design. Bitcoin mining on the Pi 4  is only profitable if the values of cryptocurrencies are supposed to remain the same. The upfront investment in equipment is more than the yearly return on investment from mining. One's perspective could alter if one were to speculate on the possibility of dramatically increasing prices. Those who are just sitting on unused hardware are in the same boat. A little setup is not worthwhile. The following guide will teach you how to set up a fingerprint sensor on your Raspberry Pi 4.

    Large Format 3D Printing: A Revolution for Engineers

    The world of large format 3D printing is dominated by a few key players who have emerged as the pioneers in this rapidly growing industry. Below are some of the biggest large format 3D printing companies and how they stand to benefit from this revolution:

    1. Stratasys: Stratasys is a leading provider of large format 3D printing solutions, offering a range of industrial-grade printers that are capable of producing high-quality prototypes and end-use parts. With its powerful proprietary Fused Deposition Modeling (FDM) technology, Stratasys is well positioned to capitalize on the growing demand for large format 3D Printing solutions.

    2. HP: HP is one of the largest and most well-known technology companies in the world, and it has recently entered the large format 3D printing market with its HP Jet Fusion technology. With its proven track record in the technology industry, HP has the resources and expertise to quickly establish itself as a leader in the large format 3D printing market.

    3. Massivit3D: Massivit3D is a leading provider of large format 3D printing solutions for the Engineering, Visual Communications, Entertainment, Academia, Interior Design, and Architectural markets. Leveraging its proprietary Gel Dispensing Printing (GDP) technology, the company’s solutions enable rapid and cost-effective production of scale 1 models and parts.

    4. Carbon: Carbon is a leading provider of large format 3D printing solutions that use Digital Light Synthesis (DLS) technology to produce high-quality, end-use parts. With its cutting-edge technology and strong focus on customer satisfaction, Carbon is well positioned to continue to grow and expand its presence in the large format 3D printing market.

    These companies stand to benefit greatly from the continued growth of the large format 3D printing market as more and more engineers, manufacturers, and other businesses adopt this innovative technology. By providing high-quality, cost-effective solutions for large format 3D Printing, these companies are helping to drive the growth of the industry and revolutionize the way products are designed and manufactured.

    Engineers Stand To Benefit Massively


    Large format 3D printing has revolutionized the engineering world by allowing engineers to quickly and easily create prototypes, designs, and finished products. By streamlining the manufacturing process, engineers can now focus on developing the best designs and products possible, instead of being bogged down by the time-consuming task of building prototypes by hand.

    One of the biggest advantages of large format 3D printing is the ability to produce parts and prototypes at a much faster rate than traditional manufacturing methods. This means that engineers can test and refine their designs in a fraction of the time it would take using traditional methods. In addition, large format 3D printing can be performed on a much larger scale, making it easier to produce large or complex parts and prototypes that would be difficult or impossible to produce using traditional methods.

    Another advantage of large format 3D printing is its ability to produce high-quality, precise parts and prototypes. This is because 3D printing uses computer-aided design (CAD) software to create detailed, accurate models. This precision and accuracy is essential for engineers, who need to ensure that their designs are functional and fit for purpose.

    In addition, large format 3D printing is incredibly versatile and flexible. Engineers can print parts in a variety of materials, including plastic, metal, and composites, to produce prototypes that are representative of the final product. This means that they can test their designs in real-world conditions, which is essential for ensuring that their designs are robust and reliable.

    Finally, large format 3D printing is also cost-effective. Traditional manufacturing methods can be expensive, especially when it comes to producing large or complex parts. With 3D printing, engineers can produce prototypes and parts at a much lower cost, which means they can focus their resources on developing the best possible designs and products.

    But, the above are just advantages to the world of engineering on a macro-level. How does large format 3D printing help engineers specifically? Here are just several concise examples:

    • Design Verification: Large format 3D printing allows engineers to produce prototypes of their designs in a matter of hours. This enables engineers to quickly verify the design’s form, fit, and function, leading to faster product development cycles.

    • Reduced Costs: By producing prototypes in-house, engineers can significantly reduce the costs associated with traditional prototype development processes such as tooling, shipping, and storage.

    • Improved Accuracy: Large format 3D printing provides engineers with highly accurate and precise parts. This level of precision can lead to better-performing and longer-lasting products, as well as reduced production time and costs.

    • Material Options: Large format 3D printing technology offers a wide range of material options, including plastics, metals, ceramics, and composites. This diversity of materials enables engineers to choose the best material for their specific applications, leading to improved performance and durability.

    • Customization: Large format 3D printing allows engineers to produce highly customized and complex parts, which are not possible to produce through traditional manufacturing processes. This level of customization can lead to improved product performance and increased customer satisfaction.

    • Increased Productivity: Large format 3D printing can significantly increase the productivity of engineers, as it enables them to quickly produce and test prototypes, reducing the overall time required to bring a product to market.

    • Sustainability: Large format 3D printing is a more sustainable manufacturing method compared to traditional methods as it reduces waste and energy consumption. Additionally, it enables engineers to produce only the parts they need, reducing the overall carbon footprint associated with the production process.

    In conclusion, large format 3D printing is a powerful tool that can help engineers streamline their work. By allowing them to quickly and easily produce high-quality, precise parts and prototypes, engineers can focus on developing the best designs and products possible. Whether it's reducing time-to-market, improving product quality, or reducing costs, large format 3D printing is a valuable tool that should be considered by all engineers looking to improve their workflow.

    Syed Zain Nasir

    I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

    Share
    Published by
    Syed Zain Nasir