New workers are three times more likely to sustain an injury in their first month than workers with a year's experience on the job. By improving employee training and tailoring programs to the demands of each individual role, you can better minimize the risk of accident and injury (a lab employee, for instance, requires vastly different training to an industrial line worker). In fact, OSHA advises implementing different plans for five key areas in order to form a comprehensive health and safety approach: hazard assessment; hazard mitigation; hazard prevention; electrical safety; and safety training. Additionally, it’s important to provide refresher training sessions on a regular basis. Never make health and safety training a one-time occurrence. By reiterating health and safety information and advice throughout the year, you can ensure workers maintain awareness of best practices.
A health and safety management system is essential for identifying and resolving workplace hazards and protecting workers, as well as improving overall operational performance. In fact, it can reduce total costs arising from occupational injuries by at least 20-40%. To devise your system, OSHA recommends first identifying any health and safety issues, including, risks and hazards, management system deficiencies, and opportunities for improvement, and then prioritizing those issues. You can then determine the goals of your health and safety management system in order to maximize workplace safety and minimize risks. If an employee does sustain an injury while on the job, it’s important they inform themselves of their legal rights. Filing a lawsuit for personal injury damages can help injured employees secure financial compensation to cover the cost of medical bills and lose income, Aaron Allison Law explains.
By incentivizing compliance, you have a better chance of ensuring your employees adhere to health and safety standards. Industrial workplaces often involve high-risk activities dealing with heavy machinery, electrical tools, and toxic chemicals on a daily basis. As such, employees can easily become too comfortable and lax, which results in potential injury or death. Incentivizing compliance could, for example, involve rewarding employees or managers when they achieve pre-set health and safety goals. Similarly, examples of non-compliance with rules and guidelines should also be corrected.
Health and safety should be a priority in all industrial workplaces. By improving employee training, implementing a health and safety management system, and incentivizing compliance, you can keep your workplace as safe as possible for employees.
ESP32 is a powerful chip for Internet of Things applications. This tutorial is also based on another ESP32 application in the field of IoT.
Hello readers, I hope you all are doing great. In the previous tutorial, we learned how to send sensor readings from ESP32 to the cloud (ThingSpeak webserver).
In this tutorial, we will learn to send HTTP POST requests from the ESP32 board to ThingSpeak and IFTTT APIs.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
Fig. 1 Hypertext Transfer Protocol
HTTP stands for hypertext transfer control and it is a protocol for transferring data between a web client and a web server. Hyper text transfer protocol was invented alongside HTML (Hypertext markup language) to create the first interactive, text-based web browser: the original www or World Wide Web.
Server and client communication process over HTTP:
Fig. 2 HTTP POST Request
Hypertext transfer protocol uses particular request methods to execute various tasks. Two mostly used HTTP request methods are: HTTP GET request and HTTP POST request.
HTTP GET request is generated to request data from a specific resource and the HTTP POST request method is used to send data from the client device to the server to create or update resources.
In this tutorial, we will demonstrate only the HTTP POST method with ThingSpeak and IFTTT web services.
Features of the HTTP POST request:
IFTT stands for If This Then That. It is a free web service for making different services like email, weather services, Twitter etc to connect.
IFTTT means if a service is triggered, other IFTTT services will take action.
Fig. 3 IFTTT
IFTTT acts as a bridge between ESP32 and other web services. Some of the tasks the ESP32 board can perform with the IFTTT API service are:
IFTTT comprises Applets and Applets further contains two IFTTT services namely trigger and action.
You can use the applets created by a company or can also create your own applet. To use the IFTTT applet with ESP32, we need to create an applet by ourselves. Such applet will contain Webhooks service to interact directly with ESP32 and other services that you want to use like email, Twitter service etc.
There are cases while using ESP32 with the IFTTT: either ESP32 will trigger the IFTTT to do some task or the IFTTT triggers ESP32 to do some task.
Steps to trigger IFTTT via ESP32
Enter the following link in the web browser: https://ifttt.com
Fig. 4 Creating an Applet
Fig. 5 ” If This”
Fig. 6 Search and Select Webhooks
Fig. 7 Receive a Web Request
Fig. 8 Create Trigger
Fig. 9 Then that
Fig. 10 Selecting a Service
Fig. 11
Fig. 12 To Trigger an Event
Fig. 13 Event Successfully Triggered
#include <WiFi.h>
#include <HTTPClient.h>
//---------Netwrok Credentials
const char* ssid = "SSID";
const char* password = "Password";
const char* serverName = "http://maker.ifttt.com/trigger/ESP32_test/with/key/Enter you API key";
unsigned long lastTime = 0;
unsigned long timerDelay = 15000;
void setup()
{
Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Connected to WiFi network with IP Address: ");
Serial.println(WiFi.localIP());
// Random seed is a number used to initialize a pseudorandom number generator
randomSeed(hallRead());
}
Void Loop()
//Send an HTTP POST request after every 15 seconds
if ((millis() - lastTime) > timerDelay)
{
//Check WiFi connection status
if(WiFi.status()== WL_CONNECTED)
{
WiFiClient client;
HTTPClient http;
// Your Domain name with URL path or IP address with path
http.begin(client, serverName);
// Specify content-type header
http.addHeader("Content-Type", "application/x-www-form-urlencoded");
// Data to send with HTTP POST
String httpRequestData = "value1=" + String(random(25)) + "&value2=" + String(random(25))+ "&value3=" + String(random(25));
// Send HTTP POST request
int httpResponseCode = http.POST(httpRequestData);
/*
// If you need an HTTP request with a content type: application/json, use the following:
http.addHeader("Content-Type", "application/json");
// JSON data to send with HTTP POST
String httpRequestData = "{\"value1\":\"" + String(random(40)) + "\",\"value2\":\"" + String(random(40)) + "\",\"value3\":\"" + String(random(40)) + "\"}";
// Send HTTP POST request
int httpResponseCode = http.POST(httpRequestData);
*/
Serial.print("HTTP Response code: ");
Serial.println(httpResponseCode);
Serial.println("successfully conected to host");
// Free resources
http.end();
}
else
{
Serial.println("WiFi Disconnected");
}
lastTime = millis();
}
}
Fig. Libraries
Fig. Network Credentials
Fig.
Fig.
Fig.
Fig.
Fig
Fig.
Fig.
Fig.
Fig. 14 Serial Monitor
Fig. 15 View Activity
Fig. 16 Received data.
Fig. 17 Email Received from IFTTT Server
We have already posted an article on sending sensor readings from ESP32 to ThingSpeak. In this article, we will learn how to send HTTP POST requests from ESP32 to send JSON data to the ThigSpeak server.
ThingSpeak is a web service operated by MathWorks where we can send sensor readings/data to the cloud. We can also visualize and act on the data (calculate the data) posted by the devices to ThingSpeak. The data can be stored in either private or public channels.
Steps to be followed to access ThingSpeak API:
Fig. 18 Getting Started for Free
Fig. 19 Create New Account
Fig. 20 MathWorks Sign in
Fig. 21 New Channel
Fig. 22 Create a New Channel
//-----------Libraries
#include <WiFi.h>
#include <HTTPClient.h>
//-----------Network Credentials
const char* ssid = "replace with your network SSID";
const char* password = "replace with netwrok password";
// Domain Name with full URL Path for HTTP POST Request
const char* serverName = "http://api.thingspeak.com/update";
// Service API Key
String apiKey = "Write API Key";
unsigned long lastTime = 0;
unsigned long timerDelay = 5000; //to add delay of 5sec
void setup()
{
Serial.begin(115200);
WiFi.begin(ssid, password); //initialize ESP32 wifi module
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Connected to WiFi network with IP Address: ");
Serial.println(WiFi.localIP());
Serial.println("Timer set to 10 seconds (timerDelay variable), it will take 10 seconds before publishing the first reading.");
// Random seed is a number used to initialize a pseudorandom number generator
randomSeed(analogRead(25));
}
void loop()
{
//Send an HTTP POST request after every 5 seconds
if ((millis() - lastTime) > timerDelay)
{
//Check the WiFi connection status
if(WiFi.status()== WL_CONNECTED)
{
WiFiClient client;
HTTPClient http;
http.begin( client, serverName );
http.addHeader("Content-Type", "application/json");
String httpRequestData = "{\"api_key\":\"" + apiKey +
"\",\"field1\":\"" +
String(random(30)) + "\"}";
int httpResponseCode = http.POST(httpRequestData);
Serial.print("HTTP Response code: ");
Serial.println(httpResponseCode);
// Free resources
http.end();
}
else {
Serial.println("WiFi Disconnected");
}
lastTime = millis();
}
}
Fig.
Fig.
Fig.
Fig. : data (JSON) Chart on ThingSpeak
This concludes the tutorial. I hope you found this of some help and also to see you soon with the new tutorial on ESP32.
HCI is a great way to reduce operating costs and simplify IT by using a single virtual environment to combine, compute, storage and networking. This virtual-box solution is flexible and affordable enough, allowing even smaller companies and startups to purchase HCI architecture to connect and interact with their remote workers, branch offices, and IoT applications.
According to researchers, the global HCI market will continue to grow at a steady pace during the next five years. Increasing customer demand and rapid adoption of SaaS and other cloud-based solutions due to the changes in daily operations of most businesses caused by the Covid-19 pandemic has brought HCI into the spotlight. More and more vendors are offering hyperconverged solutions, both for cloud and on-premise infrastructures.
According to experts, the HCI market was valued at an impressive $7.34 billion in 2020. It's predicted to surpass the $10 billion mark by 2025. Backup and recovery solutions and performance-enhancing environments remain the main drivers of market growth. Other niches where HCI solutions are popular include VM farms, desktop virtualization software, and database management.
Server providers and other IT vendors are divided on the issue of HCI. While some of them seem to have exited the HCI market completely, others, including even a few hardware vendors, have doubled their efforts, focusing on selling software-only products.
Hyperconverged infrastructure fits seamlessly with Edge computing. Even smaller companies have to rely on Edge if they have branch offices or operate in remote locations. Industries like retail and banking use Edge as their default option. Since HCI removes the need for separate storage and networking devices, combining Edge with HCI creates natural synergy. Connecting thin clients and VDI workstations to the company's data center running on HCI improves the systems' reliability and makes it harder to breach from the outside. From the business point of view, partnering with a single HCI vendor instead of several hardware providers leads to cost reduction and better control and maintenance. HCI solutions consume less power and take up less space than their standard hardware counterparts.
Adoption of high-speed mobile networks like 5G will lead to further growth of Edge data centers using HCI. Enterprise data centers will either switch to this new business model or will provide HCI solutions alongside their traditional IT silos. In short, the HCI will continue to co-evolve alongside Edge, expanding from the niche of serving remote office environments to other businesses that look to cut costs, reduce storage capacity and benefit from centralized management of resources that HCI offers.
When it comes to IT infrastructure, the hybrid cloud has become the default option for most companies. Hyperconverged infrastructure can serve as the backbone of the hybrid- and multi-cloud platforms. Since HCI runs on widely-used x86 infrastructure and doesn't require tweaking and overhauling, cloud service providers switch from traditional storage/compute/network silos to hyperconverged alternatives.
Major players like Dell and Amazon are rapidly moving into the HCI niche. The new Dell Technologies Cloud runs on the VxRail platform, which is one of the HCI market leaders. AWS now offers Nutanix's hyperconverged infrastructure available as a service. Microsoft has come up with Azure Stack HCI, a powerful solution for hybrid clouds.
Hyperconverged infrastructure can become a promising alternative to popular public clouds like AWS or Microsoft Azure. The biggest selling points of HCI are its ability to scale, reduced costs, better performance, and control.
As mentioned previously, backup and data recovery remain the main market driver for HCI adoption. Due to the increasing number of cyberattacks, infrastructure security becomes one of the primary concerns for most companies. HCI allows to backup data on the fly, creating healthy redundancy. It's a cheaper solution since it doesn't require third-party solutions for data backup and disaster recovery. It also brings down costs associated with storage requirements, making hyperconverged infrastructure the most affordable and attractive option for backup and disaster recovery on the market right now.
Hyperconverged infrastructure will see increased adoption both by enterprise-level companies and data centers. It has found its natural synergy with Edge computing. The need for increased security will accelerate HCI adoption in the niche of backup and disaster recovery. The popularity of hybrid cloud solutions will also increase the number of companies using HCI for their IT needs.