Introduction to TIP42

Hi Guys! Thank you for clicking this read. Hope this finds you well. In this post today, I’ll document the Introduction to Tip42. Tip42 is a medium power silicon transistor mainly used for switching and amplification purpose. It belongs to the PNP transistor family and comes in the TO-220 package. The collector current is 6A which signals it can support load under 6A. Both collector-base and the collector-emitter voltages are 40V. And the only 5V is required to initiate the transistor action as the emitter-base voltage is 5V. The power dissipation is 65W which defines the amount of energy released during the working of this transistor. The storage junction temperature is -65 to 150C and transition frequency is 3MHz. Just stay with me for 2-min as I’ll be discussing the main features, pinout, datasheet, and applications of the device Tip42. Let’s jump right in.

Introduction to TIP42

    • Tip42 is an epitaxial medium power silicon transistor mainly used for switching and amplification purpose. It falls under the category of PNP transistor and comes with current gain ranging from 15 to 75.
    • This current gain demonstrates the capacity of transistor it can amplify the current. It’s a ratio between the output current and input current.
    • Tip42 is a bipolar transistor which means two charge carriers are used in the conductivity process inside the transistor.
    • Both electrons and holes take part in the conductivity process. And in this case of PNP transistor, holes are majority carriers. And electrons are minority carriers in the case of NPN transistors.
  • This PNP transistor contains three terminals called the emitter, base, and collector. All these terminals carry different functionality and different doping concentration.
  • This different doping concentration is the main reason this bipolar transistor is not symmetrical. The external circuit is connected with the transistor through these terminals.
  • Tip42 is composed of two p-doped layers and one n-doped layer. The n-doped layer is sandwiched between the two p-doped layers. The two p-layers represent the collector and emitter terminals and the n-layer represents the base terminal. The N sign shows, a negative voltage is applied on the base terminal to trigger and start the transistor action.
  • This bipolar transistor controls the small input current and produces the large output current, the reason these devices are called current-controlled devices because two charge carriers are used for conductivity in contrast to FETs(field effect transistor) which is unipolar voltage-controlled devices. Where conductivity is carried out with only one charge carrier.
 

TIP42 Features

The following are the main features of transistor BC538.
  • Package: TO-220
  • Material: Silicon
  • Type – PNP
  • Emitter-Base Voltage: 5 V
  • Collector-Base Voltage: 40 V
  • Collector-Emitter Voltage: 40 V
  • Collector Dissipation: 65 W
  • Collector Current: 6 A
  • Transition Frequency: 3 MHz
  • Current Gain (hfe): 15 to 75
  • Storage Junction Temperature: -65 to +150 °C
  These are the main features and absolute maximum ratings of the device Tip42. Make sure you don’t apply these ratings for more than the required time, otherwise it will harm your device reliability.
  • Plus, make sure your ratings don’t exceed these absolute maximum ratings while you’re working with the device, otherwise they will badly damage the device and thus the entire project.
  • Both collector-emitter and collector-base voltages are 40V while the emitter-base voltage is 5V which projects you need to apply 5V to initiate the transistor action.
  • The Collector current is 6V which indicates this transistor can support load under 6A. The transition frequency is 3MHz and power dissipation is 65W which is the amount of energy released during the working of this transistor.
  • DC common-emitter current gain ranges from 15 to 75. It is a ratio between collector current and base current. This describes the capacity of transistors it can amplify the current. This is a relation between output amplified current to input small current.
  • Another important current gain is the common-base current gain which is a ratio between collector current and emitter current and its value is always less than one. Normally ranges from 0.5 to 0.95.
  • The small current at one pair of terminals is used to produce large current across other pairs of terminals of the transistor and this process is used for amplification purposes.
  • It is important to note that the PNP transistors are less likely to employ for amplification purposes than NPN transistors. Because the mobility of electrons in the NPN transistor is far better and quicker than the mobility of holes in PNP transistors.
 

TIP42 Pinout

The Tip42 consists of three main terminals called: 1: Base 2: Collector 3: Emitter The following figure shows the pinout diagram of Tip42.
  • The collector terminal is lightly doped and the emitter terminal is highly doped in contrast to the other two terminals.
  • The collector terminal is 10-times lightly doped than the base terminal. And this transistor is manufactured in such a way, the collector side covers the entire emitter terminal area.
  • The base terminal is responsible for the entire transistor action.
  • This base terminal acts like a control valve that controls the number of holes in the case of the PNP transistor and the number of electrons in the case of NPN transistor.
  • When 5V is applied at the base terminal, it gets biased and starts the transistor action where current moves from emitter to collector terminal which is the opposite in the case of NPN transistors where current moves from collector to emitter terminal. And in both cases base terminal controls the amount of current passing through it.

TIP42 Datasheet

Before you apply this device into your project, scan through the datasheet of the component that helps you get a hold of the main characteristics of the device. You can download the datasheet of Tip42 by clicking the link below.

TIP42 Applications

Tip42 is used in the following applications.
  • Used for switching and amplification purpose.
  • Used to drive load under 6A.
  • Incorporated in the motor control circuit
  • Employed in H-bridge circuit
  • Incorporated in the voltage regulator circuit
That’s all for today. I hope you’ve got a clear insight into the Introduction to Tip42. If you’re unsure or have any question, you can pop your question in the comment section below, I’d love to assist you the best way I can. Keep your suggestions and feedback coming, they help us create quality content customized to your exact needs and requirements. Thank you for reading the article.

Introduction to TIP42C

Hi Friends! I welcome you on board. Happy to see you around. In this post, I’ll detail the Introduction to Tip42c. Tip42c is a medium power transistor mainly used for amplification and switching purpose. It is made up of silicon material and falls under the category of PNP transistors. The voltage across collector and emitter terminals is 100V and the voltage across base and collector terminals is 100V. The 5V is the voltage across base and emitter terminals which projects the value of voltage required to bias this transistor. The 6A is collector current which indicates the value of loads this transistor can support. Just bear with me for a little while as I’ll be documenting the main features, pinout, applications, and datasheet of this tiny component Tip42c.

Introduction to TIP42C

  • Tip42c is a PNP medium power bipolar transistor mainly used for switching and amplification purpose.
  • It is composed of silicon material and comes in the TO-220 package.
  • It comes with three pins called the emitter, base, and collector. These pins are also known as transistor terminals that are connected with the external electrical circuit.
  • The small input current across one pair of terminals is used to generate large output current across other pairs of terminals.
  • Tip42c contains three layers where two are p-doped silicon layers and one is an n-doped silicon layer. The n-doped layer represents the base terminal where negative voltage is applied to start the transistor action. The two p-doped layers surround the n-doped layer.
  • As this bipolar transistor controls the small current to produce large current, the reason bipolar transistors are considered as a current-controlled device in contrast to FETs(field effect transistor) which is a unipolar transistor (conductivity happens due to one charge carrier) that are voltage-controlled devices.
  • Two current-gains are important while studying bipolar transistors. One is a common-emitter current gain which ranges from 15 to 75 in this case and common-base current gain which is a ratio between collector current to emitter current, this is normally called alpha.
Its value is always less than 1, commonly lies from 0.90 to 0.95 but more often than not its value is taken as unity.  

TIP42C Features

The following are the main features of device Tip42c
  • Name: TIP42C
  • Package: TO220
  • Material used: Silicon
  • Type: PNP
  • Power Dissipation: 65 W
  • Collector-Base Voltage = Vcb: 100 V
  • Collector-Emitter Voltage = Vce: 100 V
  • Emitter-Base Voltage = Veb: 5 V
  • Collector Current = Ic : 6 A
  • Operating Junction Temperature = Ti:  -65 to 150 °C
  • Transition Frequency = ft: 3 MHz
  • Common-emitter current gain = hfe: 15 to 75
These are the main features and the power ratings of the transistor Tip42c. Don't apply these ratings for more than the desired time, else they will influence the device reliability.
  • The Tip42c is a bipolar transistor which means two charge carriers are used for the conduction process inside the transistor. Both electrons and holes are used for the conductivity, however, holes are the majority carriers and electrons are the minority carriers. Which is the opposite in the case of NPN transistor where electrons are the majority carriers and holes are minority carriers.
  • This PNP transistor comes in TO-220 package with collector current 6A which demonstrates it can support the loads under 6A.
  • The junction temperature ranges from -65 to 150C and the transition frequency is 3MHz which is a measure of the transistor’s high frequency operating characteristics. It is denoted by ft.
  • The common-emitter current gain stands from 15 to 75 which is the capacity of the transistor it can amplify the small input current. It is called beta and is a ratio between output collector current to input base current.
  • And the only 5V is required to start the transistor action because 5V is the voltage across emitter and base terminals.
  • It is important to note that this PNP transistor is not preferred over its counterpart NPN transistor because the mobility of electrons in the NPN transistors is quicker and better than the mobility of holes inside the PNP transistor.
  • Moreover, in NPN transistors the current flows from the collector side to the emitter side in contrast to PNP transistors where current moves from the emitter side to the collector side.
  • The 65W is the power dissipation that indicates the energy released when this transistor starts working in the electrical circuit. This varies from transistor to transistor.

TIP42C Pinout

The Tip42c contains three terminals named: 1: Base 2: Collector 3: Emitter The following diagram shows the pinout of the transistor Tip42c.
  • All these terminals carry different doping concentrations and different working ability. The emitter side is more doped compared to the other two terminals and the collector side is lightly doped. The base side is 10-times more doped than the collector terminals.
  • This bipolar transistor is not symmetrical. This absence of symmetry is due to the different doping concentration of the emitter and collector terminals.
  • In bipolar transistors, the base terminal is responsible for the entire transistor action. When voltage is applied at the base terminal, it gets biased and starts controlling the number of holes in this case of PNP transistors and the number of electrons in the case of NPN transistors.
  • This base terminal acts like a control valve that controls the amount of current. The emitter terminal is highly doped and contains the entire current of the transistor. The emitter current is equal to the sum of the collector current and base current.
 

TIP42C Datasheet

When you’re working with tiny devices like Tip42c, it is wise to scan through the datasheet of the component that documents the main characteristics of the transistor. Click the link below and download the datasheet of Tip42c.

TIP42C Applications

The Tips42c is used in the following applications.
  • Used for switching and amplification applications
  • Used in motor control drivers
  • Employed in H-bridge circuits
  • Incorporated in voltage regulator circuits
  • Used to drive loads under 6A
That’s all for today. I hope you find this article helpful. If you’re unsure or have any question, you can pop your query in the section below, I’d love to help you the best way I can. Feel free to leave your valuable suggestions and feedback, they assist us to generate quality content customized to your exact requirements. Thank you for reading the article.
Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir