TIP41C Transistor Pinout, Features, Datasheet & Applications
Hi Friends! Welcome you on board. Happy to see you around. In this post today, I’ll walk you through the Introduction to Tip41c.
Tip41c is an NPN transistor that comes in the TO-220 package and is mainly used for amplification and switching purposes. It’s a high switching speed device with improved current gain and a high collector current around 6A that indicates the value of load this device can support. Both collector-base and collector-emitter voltages are 100V (higher than other bipolar transistors) and the emitter-base voltage is 5V which shows the only 5V is required to bias this component.
Just stay with me for a little while as I’m going to detail the pinout, datasheet, applications, power ratings, working principle, and physical dimensions of this tiny device.
Let’s jump right in.
Introduction to TIP41C
- Tip41C is an electronic tiny device mainly used for switching and amplification purpose. It belongs to the category of NPN transistor and comes with high power around 65W, which is the amount of energy released during the working of this transistor.
- This NPN transistor comes with three pins, also known as terminals, called the emitter, collector, and base.
- The small input current across one pair of terminals is used to produce a large current across other pairs of terminals. This process is used for amplification purposes.
- Tip41c is composed of three layers. One is a p-doped layer and the other two are n-doped layers that are made up of semiconductors (silicon material).
- The p-doped layer sits between the two n-doped layers. And the p-doped layer is the base terminal and the P sign shows positive voltage is applied at the base terminal to start the transistor action.
- This device is composed of two junctions. One is the base-emitter junction that is forward biased and the base-collector junction that is reverse biased in forward active mode.
- The collector current is 6A which is much higher than other bipolar transistors available in the market. This current defines the amount of load this device can support.
- And common-emitter current gain stretches from 15 to 75 which is the capacity of the transistor it can amplify the input current. It is a ratio between collector current and base current.
- The transistor frequency is 3MHz which demonstrates how the current gain of the transistor is influenced by the input frequency.
- This device controls the low input current and produces high output current, the reason this device is called a current-controlled device.
- This is a bipolar transistor which means two charge carriers are used for the conductivity process i.e. electrons and holes. The electrons are major carriers in NPN transistors and holes are major carriers in PNP transistors.
TIP41C Datasheet
Datasheet of any component documents the characteristic and performance of the device through which you understand what the product is about and its power ratings. Click the link below to download the datasheet of Tip41c.
TIP41C Pinout
The Tip41c comes with three terminals named:
1: Base
2: Collector
3: Emitter
The following figure shows the pinout diagram of Tip41c.
- This device is manufactured in such a way, the collector side covers the entire emitter area, making electrons difficult to escape without being collected by the collector terminal.
- All these pins come with different doping concentrations. The collector side is lightly doped and the emitter side is more doped compared to both base and emitter pin.
- The collector pin is 10-times lightly doped compared to the base terminal. These pins are used for external connections with the electrical circuit.
TIP41C Working Principle
- No matter the bipolar transistor you pick, the base pin is responsible for the transistor action in every bipolar transistor. When a positive voltage is applied at the base pin, it gets biased, initiating the transistor action.
- And the current starts flowing from the collector to the emitter terminal in contrast to the PNP transistor where current flows from emitter to collector terminal.
- The base pin works like a control valve that controls the number of electrons in this NPN transistor and the number of holes in the PNP transistor.
- The bipolar transistors are not symmetrical. The lack of symmetry is caused by different doping concentrations of collector and emitter terminals.
- The two most common current gains are used to demonstrate the nature and current amplification capability… one is a common-emitter gain that 10 to 75 in this case which is a ratio between the collector and base current.
- It’s is also known as the amplification factor. This factor signals the capacity of transistors it can amplify the small input current. This factor is called beta.
- Another important factor is a common-base current gain which is a ratio between collector and emitter current. The value of this gain is always less than 1. Most likely stretches from 0.5 to 0.95.
TIP41C Power Ratings
The table below shows the absolute maximum ratings of Tip41c.
Absolute Maximum Ratings of Tip41C |
No. |
Rating |
Symbol |
Value |
Unit |
1 |
Collector-Emitter Voltage |
Vce |
100 |
V |
2 |
Collector-Base Voltage |
Vcb |
100 |
V |
3 |
Emitter-Base Voltage |
Veb |
5 |
V |
4 |
Collector Current |
Ic |
6 |
A |
5 |
Current Gain |
hfe |
15 to 75 |
|
6 |
Power Dissipation |
Ptot |
65 |
W |
7 |
Storage Temperature |
Tstg |
-65 to 150 |
C |
- You can see from the table, collector-base and collector-emitter voltages are 100V and the emitter-base voltage is 5V which means it requires 5V to start the transistor action.
- Total power dissipation is 65W and common-emitter current gain lies from 15 to 75 that defines the capacity of transistor it can amplify the input current. The transition frequency is 3MHz and the storage temperature stands from -65 to 150C.
TIP41C Alternatives
The following are the alternatives to Tip41c.
- MJE5180
- 2SD1895
- MJE5181
- BC911
- BD711
Cross-check the pinout of alternatives before you incorporate them into your project. It’s likely the pinout of the alternatives doesn’t exactly match with the Tip41c pinout. To remain on the safe side and to avoid any hassle later, double-check the pinout of the alternatives.
The complementary PNP transistor to Tip41c is Tip42c.
TIP41C Applications
This NPN transistor is used in the following applications.
- Used for amplification and switching purposes.
- Used to drive load under 6A.
- Incorporated to drive DC motors.
- Used in Darlington pairs.
- Employed for signal amplification and audio amplification.
TIP41C Physical dimensions
The following diagram shows the physical dimensions of Tip41c.
That’s all for today. I hope you find this article helpful. If you have any question, you can pop your comment in the section below, I’d love to help you the best way I can. You’re most welcome to share your feedback and suggestions, they help us curate content tailored to your exact needs and requirements. Thanks for reading the article.
Introduction to TIP41
Hello friends, I hope you all are doing great. In today's tutorial, we are gonna have a look at detailed
Introduction to TIP41. It is an NPN power transistor. It exists in (TO-220) malleable suite which marks this expedient appropriate for acoustic, power rectilinear and swapping submissions. Its corresponding transistor is TIP42. It is intended by joining three (3) components of semiconductor material by doping with different materials. It's center portion is base which is tinny and the other two outer parts are prominently doped than the base.
Several transistors can strengthen a trivial current which will then be leading adequate to effort attention or other greater current maneuvers. These discretion are proficient to notice a shift in voltage and work as a switch. The TIP41 is a collective transistor which is inexpensive and serene to use for several proposals. In today’s post, we will have a look at its shield, smashup, deviation, entitlements, etc. I will also share some links where I have associated it with other
microcontrollers. You can also get more material about it in comments, I will guide you more about it. So, let’s get started with a basic
Introduction to TIP41.
Introduction to TIP41
- It is an NPN power transistor. It exists in (TO-220) malleable suite which marks this expedient appropriate for acoustic, power rectilinear and swapping submissions.
- It is an intermediate power consuming transistor used in submissions where working circumstances of the lesser signal transistor may be a minute strained.
- These diplomacies proposal power assessments which are regular and are mostly cast-off in transportable power sources and amplifier circuits.
- Cogitate by these expedients as buffers for transistors output phases in higher power acoustic intensifier schemes or as output phases in intermediate power yield acoustic amplifier circuits.
- To evade impairment, constantly usage a heat absorber if extreme power from this expedient is prerequisite as the transistor compendium has a boundary to the quantity of temperature it can dispel from the transistor connection.
Pinout of TIP41
- These are the main pinout of TIP41.
Pin# |
Type |
Parameters |
Pin#1 |
Emitter |
Current initiates by the emitter, it is characteristically linked to ground. |
Pin#2 |
Base |
It achieves the biasing of the transistor and works to turn ON or OFF the transistor. |
Pin#3 |
Collector |
Current travels in over collector, it is usually related to loading. |
Let's see a diagram of the pinout.
Features of TIP41
- These are some important features of TIP41 which are discussed here.
- It is an NPN junction transistor.
- The voltage at its collector and emitter terminals is a hundred volts.
- It voltage at collector and base terminals are a hundred voltages.
- The voltage at emitter and base terminals is five volts.
- It uses current collector six amperes.
- Its dissipation power is minus sixty-five watts (-65).
- Its gain is from minus fifteen to seventy-five volts.
- Its transition frequency is minus three megahertz.
- It's Working and Storing Connection Temperature Range from minus sixty-five to plus one fifty (-65 to +150 °C).
Ratings of TIP41
- Now we study the different rating parameters of TIP41 which are described below.
Symbols |
Ratings |
Parameters |
VCBO |
100 volts |
These are the voltage across collector and base. |
VCEO |
100 volts |
These are the voltage around collector and emitter. |
VEBO |
5 volts |
These are the voltage around emitter and base. |
IC |
6 amperes |
It is the current at collector which is dc. |
ICM |
10 amperes |
It is the pulse of collector current. |
IB |
3 amperes |
It is the current at the base.
|
Pc |
65 watts |
It is the power dissipation at Collector (TC=25°C). |
TJ |
150 C |
It is the Junction Temperature. |
Electrical characteristicsTIP41
- After reading of rating parameters now we study the electrical characteristics of TIP41.
Symbols |
Ratings |
Parameters |
ICEO |
0.7 mA |
It is the value of the cut-off current the collector. |
IEBO |
1 A |
It is the value of emitter cut off the current. |
ICES |
0.4 mA |
It is the value of collector cut-off current. |
VCEO |
100 V |
These are the collector and emitter supporting voltage. |
VCE |
1.5 V |
These are the collector and emitter supporting voltage. |
VBE |
2 V |
It is the value of voltage across base and emitter terminals.
|
hFE |
75 |
It the value of DC current gain. |
So it was all about TIP41 if you have any question about it ask in comments. Thanks for reading. Take care until the next tutorial.