Hi readers! I hope you are doing great. Today, I am going to share the second version of the top embedded libraries designed for the proteus. Before this, we shared the first version of many libraries that engineering students are using in their projects. The interest of the students in these libraries has motivated us to design even better versions of them. These versions have a more realistic design and error-free working and are ideal for engineering students to use in their simulation in Proteus.
If you don’t know how to download and use these libraries, then you must learn how to add a new library in Proteus . Moreover, if you are interested in learning the details of all the libraries, you must see the new proteus libraries for engineering students . The installation and application process of these libraries is simple, and we will share all the details through links in this article. So let's know about the first library.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | LCD 20x4 | Amazon | Buy Now | |
4 | DHT11 | Amazon | Buy Now | |
5 | DHT22 | Amazon | Buy Now | |
6 | Flame Sensors | Amazon | Buy Now | |
7 | HC-SR04 | Amazon | Buy Now | |
8 | Arduino Nano | Amazon | Buy Now | |
9 | Arduino Pro Mini | Amazon | Buy Now | |
10 | Arduino Uno | Amazon | Buy Now |
Arduino is one of the most important microcontrollers that makes embedded systems more versatile and interesting. Installation of the Arduino board provides the facility to use these boards in multiple types of projects in proteus simulations. Here is the list of the Arduino libraries V2.0.
Download the zip file and follow the procedure mentioned in these articles to use Arduino in the simulations.
Sensors are the most important components to make the embedded project versatile. Real-time sensors are used to detect changes in the environment and provide the output in different forms. Just like the first version of these sensors, there are multiple pins to connect the sensor to the circuit. The most important one is the TestPin which is used to make changes to the sensors. Here is a list of some sensors with a brief description of each:
The sound detector is used to detect any kind of sound frequency and then convert it into electricity. The real-time sound detector has a mic that converts the vibrations of the sound into electrical signals. These signals go through the amplification process, and as a result, these sounds are detected. In proteus, the presence of the sound or the change in the surrounding frequency is indicated by changing the values on the input pin of the detector. Following is the link to download the sound detector library:
Sound Detector Library for Proteus V2.0
Embedded systems have applications in all fields, and those who want to create projects in the medical field can use the heartbeat sensor in the simulation to provide versatility and uniqueness to their projects. This sensor is a little bit difficult to deal with as compared to the other sensors on the list, but when the circuit is designed carefully, it can be used in multiple projects. This is an analogue sensor; therefore, the student can set the limits of the heartbeat to indicate any emergencies or alerts. Here is the download link for this:
Heart Beat Sensor Library V2.0 for Proteus
Students seem interested in emerging fields like the Internet of Things (IoT); therefore, we have designed one of the most important sensors for Porteus that will give them chances to work on agricultural automation projects. This is a versatile sensor that can be used in several projects related to agriculture and related fields. The zip file for this sensor has three types of sensors, and version 2.0 has a little bit of a fluctuating design to make it more realistic.
Soil Moisture Sensor Library for Proteus V2.0
These are the analogue sensors, and the design of these sensors is very similar to the real-time moisture detectors. We have chosen the best colours and details for each component to make it more user-friendly.
The first version of the PIR sensor was digital; therefore, to provide more room for creativity, here is the second version, which has an analogue sensor with relatively better working. This sensor library has four sensors that are the same in functionality but have different colours to make them attractive.
Analog PIR Sensor Library for Proteus
The properties of all these sensors can be changed through the property panel. Just like all other analogue sensors, the variable resistor is used at the input pin to change the values of the sensor and get the required output.
The vibration sensor detects the vibration of an object by sensing the change in mechanical energy. The real-time vibration sensors convert the change in mechanical energy into electrical energy that is fed into any type of indicator, such as light or sound. The sensor in the proteus is an analogue sensor that closely resembles, in design, the real vibration sensor. In vibration sensor V2.0, there are four types of designs available for the students. Here is the download link for the zip file:
Vibration Sensor Library for Proteus V2.0
The components in each sensor are the same, but the base and capacitor colours are changed.
There are multiple ways to display the results, and Proteus and the LCDs are the easiest and most effective ways to do so. This version of LCD resembles the real LCD used in embedded projects. The pinouts are more clean, and the size and display are better than any other LCD libraries in Proteus. This version has two sizes of LCD, which are:
As a result, when students use it in their simulation, they are able to get the required output with minimum effort. Here is the link to the description for downloading and using the LCD V2.0 in Proteus.
The installation process for this library is the same as it was for the LCD library V1.0.
Next on the list is the solar panel library, which helps the students work on more creative projects with renewable energy sources. The solar panel V2.0 has a better design and is easier to design. The students have to simply download the zip file, follow the instructions given in the following link, and connect it to the project.
Solar Panel Library for Proteus V2.0
There are two designs for the solar panel in this version. Both of these work alike, but students can choose the best design according to their circuit. By default, both of these work on 12V because it is standard, but the user can change the voltage values from the properties panel.
The embedded system is an important field in engineering, and we have designed the second version of some proteus libraries. These libraries are extremely useful in testing the designed simulations related to multiple fields. The Arduino, solar panel, LCS, and different sensors are loved by the students, and we have made these versions with better design and results. I hope you like it. Stay with us for more useful libraries.
Hi learner! I hope you are doing great. Today, I am sharing version 3.0 of the PIR sensor library for Proteus. We have already shared V1.0 and V2.0 of the PIR Sensor Library. PIR Sensor V1.0 Library for Proteus adds a digital PIR Sensor in Proteus, while the PIR Sensor V2.0 Library adds an analog PIR Sensor to simulate. These libraries were loved by the users and this motivated us to work more on it.
PIR V3.0 is analog in nature, has an error-free structure and the Pinout structure is better organized. Moreover, the design is improved a little bit and we have omitted the website link from the sensor to make it look professional.
Same as the previous version, this PIR has four pins and the details of each of them will be discussed in detail later. Therefore, don’t worry if you have no experience with the sensors in Proteus. Let's discuss the basic introduction of the PIR sensor:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | LCD 20x4 | Amazon | Buy Now | |
4 | PIR Sensor | Amazon | Buy Now | |
5 | Arduino Uno | Amazon | Buy Now |
Here are a few of the Embedded Projects in which we have used PIR sensor, you should have a look:
Generally, the real-time PIR sensor has three pins and these are used for different purposes. It is important to connect all of these correctly to get the output. Here is the description of each pin:
If these pins are set properly, the circuit works fine. The sensor we have designed has a fourth terminal called TestPin. Proteus is the simulation software therefore, it is not possible to provide the motion. TestPin is used to provide the motion by the user.
We know that Proteus does not have a built-in PIR sensor therefore, we have created this library so that you may use it in the circuits. For this, you have to download and install the PIR Sensor library in your proteus software. Here is the download link for the installation, simply download the zip file.
PIR Sensor Library for Proteus V3.0
The zip file has another folder named “Proteus simulations” where you can find the resources of projects containing simple working of PIR Sensor and PIR Sensor interfaced with Arduino UNO and LCD.
Now, open your Proteus software and if was opened already, restart it to index the PIR sensor library with it.
Here, you can see it has the minimum text on it and the size is smaller than the previous version so that you may fix it in your large and complex projects without any problem. Now, I am deleting two sensors and will work only on the remaining two.
This sensor will not work unless you add the HEX file to it. For this, follow the steps given:
Now, we will design two circuits of PIR sensor V3.0. The first will be simply made with the basic components and the other one will have the Arduino UNO interfaced with the LCD so that we may get the more user-friendly results. Let's hover over your Proteus workspace to make the simple PIR circuit.
The following Components are required for setting the PIR sensor.
Go to the “Pick library” button type the names of the components one by one and select them.
The real-time PIR sensor does not require the LC circuit but in Proteus, the peak-to-peak values are generated which needs to be converted into RMS values and that's why we used this LC filter.
Now, hit the play button to check the values of the PIR sensor.
Now, if you want to make your project more user-friendly, an LCD is the best option. To link these, I have used the Arduino UNO and through the code, the values of the PIR reading are shown on the LCD. I have interfaced the TEP LCD 20X4 with the Arduino and simply connected the output of PIR with the analog pin of Arduino. The circuit now looks like the following image:
Once your simulation is ready, you have to paste the code into Arduino.exe.Open your software and paste the given code there.
#include
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
int SensorPin = A0;
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(20, 4);
// Print a message to the LCD.
lcd.setCursor(1,0);
lcd.print("www.TheEngineering");
lcd.setCursor(4,1);
lcd.print("Projects.com");
lcd.setCursor(0,2);
lcd.print("Analog Value: ");
lcd.setCursor(0,3);
lcd.print("Voltage: ");
}
void loop() {
int SensorValue = analogRead(SensorPin);
float SensorVolts = analogRead(SensorPin)*0.0048828125;
lcd.setCursor(14, 2);
lcd.print(SensorValue);
lcd.setCursor(9, 3);
lcd.print(SensorVolts);
lcd.print(" V");
delay(1000);
// sensorValue = analogRead(sensorPin);
// lcd.setCursor(4,2);
// lcd.print(sensorValue);
// delay(1000);
}
The same code is also given in the zip file you have downloaded.
When the code is run on the Arduino.exe, it provides the HEX file in the compilation details. You have to copy the address of the HEX file and insert it into the Arduino in Proteus. For this, follow these steps:
Go to the Proteus and double-click on the Arduino to open the properties panel. Now paste the path of the HEX file here. The circuit is now ready to work. If you are stuck at this step, you should have a look at How to get Hex File from Arduino.
Now it's time to run the simulation. So hit the Play button and you will see that the output is shown on the screen.
The analog values can be changed through the potentiometer of the testPin. The analog values of the motion sensor along with the voltages are shown on the LCD. I hope your circuit worked the same as mine. If you are facing any type of issue, you can contact us.
Hi learners! I hope you are doing great. Today, I am going to share the second version(V2.0) of the LCD library for Proteus. We have already shared the LCD V1.0 Library on our blog. Along with appreciation, we also get some complaints/suggestions about that library. So, we have designed a better version of the LCD library by keeping the suggestions in mind.
Version 2.0 has error-free working, better pinout prints, and is identical to the real-world LCD. We have also removed our website link from the LCD. This library includes two alphanumeric LCDs in it i.e. LCD 16x2 and LCD 20x4.
If you don't have any experience with the LCD, no need to worry as we will guide you from scratch. Before installing the LCD, let's first have a look at its brief introduction:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | Resistor | Amazon | Buy Now | |
3 | LCD 16x2 | Amazon | Buy Now | |
4 | LCD 20x4 | Amazon | Buy Now | |
5 | PIR Sensor | Amazon | Buy Now | |
6 | Arduino Uno | Amazon | Buy Now |
Let's have a look at the pinout of LCD:
Both of these LCDs(16x2 and 20x4) have similar pinouts and a simple basic circuit needs to be designed in order to operate them. There are a total of 16 pins present in LCD used for different purposes. The below table has the complete description of LCD Pinout:
Serial |
Pin |
Functionality |
Description |
1 |
VSS |
Ground |
This pin is connected to the ground terminal of the circuit. |
2 |
VDD |
Power Supply |
It is connected to the positive voltage(+5V) and is responsible for the power supply to all pins. |
3 |
VEE |
Voltage Emitter |
It is used to control the contrast of LCD. it applies the negative voltage and thus controls the electric field of the LCD. |
4 |
RS |
Register Select |
It selects the LCD register. LCD has two registers: an instruction register and a data register. |
5 |
RW |
Read or write |
The read-and-write operation is done through this pin. if set to HIGH then LCD is in reading mode and LOW means it is writing the data. |
6 |
E |
Enable |
Enables the working of LCD. If HIGH then allow the display and if LOW then disable it. |
7-14 |
D0-D7 |
Data bits (Pins to deal with the data) |
Data is sent to the LCD in a parallel manner. These pins send this data and out of these, D0 is the least significant and D7 is the most significant. |
The installation of the LCD V2.0 is simple. The first step is to download the library files. I believe you have Proteus installed. So, click the below button to download the Proteus Library zip file.
The zip file also contains the project, where we simply connected both the LCDs with Arduino, so that you could check their working. Moreover, code is also present in the file.
Once the Library is installed, you need to open your Proteus software. If it's already open, you have to restart it. Now follow the instructions.
I have installed both versions therefore, I am getting four options. I will choose the LCD 20X4 V2.0 and LCD 16X2 V2.0.
Click on the components and simply place them on the working sheet of Proteus, it will appear as shown below:
Now, let's design an LCD simulation in Proteus:
Now, let's design a simple LCD simulation, where we will interface it with an Arduino UNO board. We will display our website's link on the LCD. So, let's design the circuit:
Go to the pick library and select the following components:
Now let's design the Arduino code to display data on these LCDs:
Now, open your Arduino software, I hope you have it installed. Paste the below code in it, I have also added this code in the zip file.
#include
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.setCursor(1,0);
lcd.print("www.TheEngineering");
lcd.setCursor(4,1);
lcd.print("Projects.com");
}
void loop() {
}
The next step is to get the Hex File from Arduino IDE and add in the Proteus. For this, follow these steps:
If you have followed all the steps, I am sure your project will run successfully. I hope it was helpful to you. You must practice it more and try to make different projects. So, that was all for today, will meet you guys in the next tutorial. Take care!!!
Hello friends, I hope you all are having fun. In today's tutorial, I am going to share a new Proteus library for Raspberry Pi 2. We have already shared the Proteus Libraries of other Raspberry Pi modules i.e. Raspberry Pi 4, 3, Pico etc. and we discussed that these Pi modules won't be able to read the Python code. We have just designed the external appearance of these modules and you can use these Pi modules for circuit designing and project presentations.
We have also added the Arduino firmware in these boards, which is just to provide a bit of interaction with these boards. We have given these boards an unofficial title "Arduino Pi".
So, let's have a look at How to simulate Raspberry Pi in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | LCD 16x2 | Amazon | Buy Now | |
5 | LCD 20x4 | Amazon | Buy Now | |
6 | PIR Sensor | Amazon | Buy Now |
Raspberry Pi 2 Library for Proteus
Note: For a better understanding, you should read How to Add a New Library File in Proteus.
Note: Its design is quite similar to that of Raspberry Pi 3, although we added the name to differentiate between the two.
As mentioned above, this Pi board won't be able to read the Python code. So, we have added the Arduino firmware in it to make it a bit more interactive. So, let's blink an LED with this Raspberry Pi 2 module in Proteus:
So, that was all for today. I hope you have enjoyed these Raspberry Pi simulated modules. IF have any questions, please ask in the comments. Thanks for reading.
Hello friends, I hope you all are doing great. As we are working on Raspberry Pi libraries for Proteus these days, so today, I am going to share another awesome library i.e. Raspberry Pi Zero W Libary for Proteus. We have already shared the Raspberry Pi Pico, Raspberry Pi 3 & Raspberry Pi 4 Libraries for Proteus, I hope you have already installed these libraries.
We have only designed the exterior look of this module, it won't be able to read the Python code. You can use this module to design circuit diagrams of your projects or to demonstrate your project in the presentation. Although, just for fun, we have added the Arduino UNO firmware to it. So, you can add the Arduino hex file in it. Something is better than nothing.
So, let's install the Proteus Library and simulate Raspberry Pi Zero:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi Zero | Amazon | Buy Now |
Raspberry Pi Zero W Library for Proteus
Note: For a better understanding, you should read How to Add a New Library File in Proteus.
As I mentioned earlier, this RPi Zero module in Proteus won't be able to read the Python code. So, just for fun, we have added the Arduino firmware inside. I know it's not that helpful but that's all we have right now. I hope we will design the real Raspberry Pi Zero simulator one day. So, let's add the Hex File in Raspberry Pi Zero W:
Let's clear this thing up one last time, we can't add Python code in this simulated Raspberry Pi Zero, so just to have some interaction, we have added the Arduino Hex file in it. So, we need to get the Arduino hex file.
So, that was all for today. I hope you will enjoy this Raspberry Pi Zero W Library for Proteus. If having any difficulty, ask in the comments. Thanks for reading. Have a good day.
Hello friends, I hope you all are doing great. Today, I am going to share the Raspberry Pi 4 Library for Proteus. In our previous tutorial, we shared the Raspberry Pi 3 Library for Proteus and as we mentioned in that tutorial, these Raspberry Pi libraries will have dummy modules i.e. We have just designed the exterior but these boards won't be able to read the Python code. Although just for fun, we have added the Arduino firmware in these boards, so we can upload the Arduino code in it. As the legends say, something is better than nothing. We have given these boards an unofficial name "Arduino Pi".
You can use these Pi boards to design your circuit diagram or can also use it in your presentation/demonstration of your projects. I hope you will enjoy these simulated Raspberry Pi boards. Before going forward, let's first have a brief overview of Raspberry Pi 4:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi 4 | Amazon | Buy Now |
So, now let's have a look at How to add this Proteus library and simulate Raspberry Pi 4 in Proteus.
Raspberry Pi 4 Library for Proteus
Now let's design the Simulation of Raspberry Pi 4 in Proteus. As I mentioned earlier, we can't feed Python code to this RPi4 board. So, we have added the Arduino firmware to it. Thus, we need to upload the Arduino hex file in it. Let's attach an LED with Raspberry Pi 4:
So, that was all for today. I hope you will enjoy this Raspberry Pi 4 Library for Proteus and will use it in your projects. Let me know your feedback. Have a good day. Take care!!!
Hello friends, I hope you all are doing great. In today's tutorial, I am going to share a new Proteus Library for Raspberry Pi 3 module. In my previous tutorial, I shared the Raspberry Pi Pico Library for Proteus. Similar to Pico Library, this RPi3 LIbrary won't operate on the Python code. We have just designed the front look to use in the circuit design. Although, we can upload Arduino code to these simulated Raspberry Pi boards.
This Raspberry Pi Proteus Library will have only the Raspberry Pi 3 board in it. We will design the other Pi boards soon. So, let's have a look at How to simulate Raspberry Pi in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi 3 | Amazon | Buy Now |
First of all, we need to download the Raspberry Pi library files, by clicking the below button:
Raspberry Pi 3 Library for Proteus
Note: Look at How to add a new Library in Proteus 8, if you are having any issues.
Now we are going to simulate this Raspberry Pi 3 board in Proteus. We will attach a simple LED to one of its pins. As I told earlier, we have just designed the exterior of this board. It won't read the Python code. We can use it to design circuit diagrams for our project. But just for fun, we have added the Arduino firmware to it. So, we can upload the Arduino hex file in this Pi board.
Now, let's run our simulation to get the results:
So, that was all for today. I hope you will use this Raspberry Pi Library to design your projects. In the next tutorial, I will share the Raspberry Pi 4 Proteus Library. Till then, take care. Have fun!!!
Hello friends, I hope you all are fine. In today's tutorial, I am going to share the Raspberry Pi Pico Library for Proteus. It's a dummy library, we have just designed the display. We can't add the Python Code to it, but we can make it work with Arduino code. A mixture of Arduino and Raspberry Pi, I have given it an unofficial name "Arduino Pi". It's better to have something than nothing. You can design circuit diagrams using this library and can also demonstrate your project in presentations by designing simulations.
So, let's have a look at How to simulate Raspberry Pi Pico by adding this Proteus Library:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | Raspberry Pi Pico | Amazon | Buy Now |
Raspberry Pi Pico Library for Proteus
Note: Look at How to add a new Library in Proteus 8, if you are having any issues.
We have tried to keep it small in size so that other components could get more space.
As I told earlier, we can't program this Pico board with Python, which is the actual programming language of this board. But just for fun, we have enabled it to read the Arduino code. Let's design a simple blink example to see how it works:
Now let's run our simulation to check the results:
So, that was all for today. I hope you will enjoy this Raspberry Pi Pico Library for Proteus and will use it in your simulations. If you have any suggestions, use the below comment form. Thanks for reading. Take care!!!
Hello friends, I hope you all are doing well. In today's tutorial, I am going to share a new Proteus Library of ESP32 embedded module. ESP32 is a microcontroller board used mostly in IoT projects. It's a successor of ESP8266 or NodeMCU. We have already shared the NodeMCU Library for Proteus and I hope you guys have enjoyed it.
Proteus software is not capable of handling WiFi or BLE technology, thus we can't implement these technologies in the ESP32 board. Though, you can use its input/output pins to interface embedded sensors and modules. You can also use it to design the Circuit Diagram of your Project.
So, let's have a look at How to simulate ESP32 board in Proteus:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | ESP32 | Amazon | Buy Now |
Note: Look at How to add new Library in Proteus 8, if you don't know already.
So, using this ESP32 Library, we have added the board in Proteus software. Now, let's simulate ESP32 in Proteus:
We are going to simulate the ESP32 board by running Blink LED Example. As I told earlier, we can't add WiFi and BLE capabilities in this simulated ESP32 board. So, we are going to select Arduino UNO in the board section of Arduino IDE to get the hex file.
So, that was all for today. I hope you have enjoyed simulating ESP32 board in Proteus software. If you have any questions, ask in the comments. Till the next tutorial, take care. Have fun !!!
Hello friends, I hope you all are doing great. In today's tutorial, I will share a Proteus Library of another embedded module i.e. NodeMCU. NodeMCU is a microcontroller board and if you are new to this board, you should read Introduction to NodeMCU to get your hands dirty. NodeMCU is not present in the components library of Proteus and using this library you can easily simulate NodeMCU in Proteus.
We can't add WiFi and BLE capabilities to our module in the Proteus software, that's why it will just perform the basic functions i.e. sensors interfacing, PWM, I/O control etc. So, you can use it for simple code testing and can also use it to design circuit diagrams of your projects.
So, let's have a look at How to download NodeMCU Proteus Library and simulate it:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Battery 12V | Amazon | Buy Now | |
2 | LEDs | Amazon | Buy Now | |
3 | Resistor | Amazon | Buy Now | |
4 | ESP8266 | Amazon | Buy Now |
Note: Look at How to add new Library in Proteus 8, if you don't know already.
So, we have successfully added the NodeMCU module to our Proteus software. Now let's simulate NodeMCU and for that, I am going to use the blink example:
Note: As you can see in the above code, we have selected Arduino UNO in the boards' section. As I have told earlier, this NodeMCU module is only going to use its pins, we can't add WiFi or BLE capabilities in the Proteus software. So, while compiling the code, select Arduino UNO board. Something is better than nothing.
So, that's how you can easily simulate NodeMCU in the Proteus software. If you have any questions, please ask in the comments. I will resolve them as soon as possible. In the next tutorial, we will share the ESP32 Library for Proteus. Till then take care and have fun!!!